1 Introduction 1.1 General 1.2 The Geostationary Orbit in Math 1.3 The Status of Geostationary Satellites 1.4 The Framework of the Book References
2 Orbit Motion Foundations 2.1 Introduction 2.2 The Motion of the Earth 2.2.1 A Solar Day 2.2.2 A Sidereal Day 2.2.3 Equinox Direction 2.2.4 Primary Longitude 2.2.5 Local Solar Time 2.2.6 Polar Motion 2.2.7 Precession Motion 2.2.8 Nutation Motion 2.3 Time System 2.3.1 Seconds in a Day 2.3.2 Sidereal Time and Universal Time... 2.3.3 Julian Days and Modified Julian Days 2.3.4 Greenwich Sidereal Time 2.3.5 International Atomic Time 2.3.6 Coordinated Universal Time 2.3.7 Local Time 2.3.8 Ephemeris Time 2.3.9 GPS Time 2.3.10 Time System Summaries 2.4 Reference System 2.4.1 Background and General Definitions 2.4.2 J2000.0 Earth-Centered Inertial System 2.4.3 The Mean Equator and Equinox 2.4.4 The True Equator and Equinox 2.4.5 The Greenwich Meridian-Fixed System 2.4.6 International Terrestrial Reference System 2.4.7 Global Geodetic System 2.4.8 Local Tangential Coordinate System 2.4.9 Orbit RTN Coordinate System 2.4.10 Satellite-Fixed Orbit Coordinate System 2.4.11 Satellite-Fixed East/South/Down Coordinate Frame 2.4.12 Satellite Body Coordinate System 2.5 The Kepler Orbit 2.5.1 Kepler Orbit Elements 2.5.2 The Kepler Orbit with Motion States 2.5.3 The Kepler Orbit with Reference System 2.5.4 The Station Keeping Element References
3 The Motion of Geostationary Satellite 3.1 Introduction 3.2 The Geostationary Orbit in Inertial Space 3.3 The Geostationary Orbit Relative to the Earth 3.3.1 Linearization of Geocentric Distance 3.3.2 Linearization of the True Anomaly 3.3.3 Linearization of Right Ascension and Longitude 3.3.4 Linearization of Relative Declination 3.4 The Truth of "8"-Shape Subsatellite 3.5 The Relative Motion with Nominal Longitude 3.5.1 The Orbit Motion Projected on the Equator Plane 3.5.2 The Orbit Motion Projected on the Meridian Plane 3.5.3 Relative Motion Projected on the Local Horizontal Plane
4 Geostatlonary Orbit Perturbation 4.1 Introduction 4.2 Natural Evolution Motion Scenery 4.3 Lagrange Equation for Station Keeping Elements 4.3.1 Lagrange Equation for the Drift Vector 4.3.2 Lagrange Equation for the Eccentricity Vector 4.3.3 Lagrange Equation for the Inclination Vector 4.4 The Earth's Non-spherical Perturbation 4.4.1 The Earth's Non-spherical Potential Function 4.4.2 Real Geostationary Orbit 4.4.3 Semi-major Axis Evolution 4.4.4 Longitude Drift Evolution 4.4.5 Mean Longitude Evolution 4.4.6 Inclination Vector Evolution 4.4.7 Eccentricity Vector Evolution 4.5 The Solar and Lunar Perturbation 4.5.1 The Lunar and Solar Potential Function 4.5.2 Semi-major Axis Evolution 4.5.3 Longitude Evolution 4.5.4 Eccentricity Evolution 4.5.5 Inclination Evolution 4.5.6 Solar-Lunar Ephemeris 4.6 The Solar Radiation Perturbation 4.6.1 Solar Radiation Pressure Potential Function. 4.6.2 Longitude Drift Evolution 4.6.3 Eccentricity Evolution 4.6.4 Inclination Evolution 4.6.5 Eclipses of the Solar by the Earth and Moon 4.7 Perturbation Summaries References
5 Harmonic Analysis Geostationary Orbit 5.1 Introduction 5.2 Harmonic Analysis 5.3 Basic Functions and Periodic Expansion 5.4 Determining the Coefficients with SVD Method 5.5 Longitude and Drift Harmonics 5.6 Eccentricity Vector Harmonics 5.7 Inclination Vector Harmonics References
以下为对购买帮助不大的评价