• 大数据技术基础
  • 大数据技术基础
  • 大数据技术基础
21年品牌 40万+商家 超1.5亿件商品

大数据技术基础

2 八五品

仅1件

河南周口
认证卖家担保交易快速发货售后保障

作者鄂海红、宋美娜、欧中洪 著

出版社北京邮电大学出版社

出版时间2019-10

版次1

装帧平装

上书时间2024-11-07

豆房旗书摊

已实名 进店 收藏店铺

   商品详情   

品相描述:八五品
图书标准信息
  • 作者 鄂海红、宋美娜、欧中洪 著
  • 出版社 北京邮电大学出版社
  • 出版时间 2019-10
  • 版次 1
  • ISBN 9787563558780
  • 定价 48.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 230页
  • 字数 401千字
【内容简介】
随着大数据时代的到来,涌现出多元化海量数据。大数据背后隐藏着大量的经济利益,尤其是 通过数据整合、分析与挖掘,其所表现出的数据整合与控制力量已经远超以往。本书详细介绍了数据 科学与大数据技术的详细内容。共分为9章,主要内容包括:大数据与数据科学、数据采集与数据预 处理、数据存储、大数据处理平台、数据分析、数据可视化、数据安全与隐私、大数据应用、数据 思维。 

本书适合作为数据科学与大数据专业及其相关专业本科生教材,也可供从事相关专业的教学、科 研和工程技术人员参考。
【作者简介】
甘勇:教授、郑州工程技术学院副校长,长期工作在教学科研一线,主持的大学计算机和程序设计基础课程被评为河南省精品课程、河南省精品资源共享课,担任教育部计算机课程教学指导委员会委员、河南省计算机类专业和网络空间安全专业教学指导委员会副主任,兼任中国计算机学会理事、河南省计算机学会副理事长、河南省计算机教育研究会副理事长。荣获过优秀教学成果二等奖、2项河南省优秀教学成果特等奖、3项河南省优秀教学成果二等奖。陶红伟:郑州轻工业大学计算机与通信工程学院副教授、博士,主要研究方向包括大数据分析、软件可信度量与评估、信息安全。主持省部级以及横向项目5项,作为主要成员参与国家863重点项目子课题、国家自然科学基金重大研究计划集成项目子课题、国家863项目和国家自然科学基金项目等。
【目录】
第1章 大数据与数据科学 / 1 

1.1 大数据概述 / 1 

1.1.1 大数据的概念 / 2 

1.1.2 大数据的特征 / 2 

1.1.3 大数据的结构类型 / 3 

1.2 大数据的发展 / 4 

1.3 大数据处理的挑战 / 5 

1.4 数据科学的概念 / 6 

1.5 数据科学的由来 / 7 

1.6 数据科学的应用场景 / 9 

1.6.1 行业数据 / 9 

1.6.2 数据服务 / 10 

小结 / 11 

习题 / 11 

第2章 数据采集与数据预处理 / 12 

2.1 数据采集和数据预处理概述 / 12 

2.1.1 数据采集概述 / 12 

2.1.2 数据预处理概述 / 13 

2.2 数据采集技术 / 15 

2.2.1 网络数据采集技术 / 15 

2.2.2 日志数据采集技术 / 23 

2.3 数据预处理技术 / 28 

2.3.1 数据清洗 / 28 

2.3.2 数据集成 / 30 

2.3.3 数据变换 / 30 

2.3.4 数据规约 / 32 

小结 / 33 

习题 / 33 

第3章 数据存储 / 34 

3.1 数据存储概述 34 

3.1.1 数据存储的发展历程 / 34 

3.1.2 数据存储模型 / 36 

3.2 大数据存储 / 36 

3.2.1 海量数据存储关键技术 / 37 

3.2.2 分布式文件系统 / 37 

3.3 分布式数据库 / 41 

3.3.1 HBase 分布式数据库 / 42 

3.3.2 MongoDB 分布式 数据库 / 45 

3.3.3 Hive 分布式数据 仓库 / 47 

小结 / 49 

习题 / 49 

第4章 大数据处理平台 / 50 

4.1 概述 / 50 

4.2 大数据的处理平台架构 / 51 

4.2.1 技术架构 / 51 

4.2.2 开源平台 / 52 

4.3 大数据的批量处理 / 54 

4.3.1 批量计算的概念 / 54 

4.3.2 批量计算的软件系统 / 55 

4.4 大数据的流式计算 / 63 

4.4.1 流式计算的概念 / 63 

4.4.2 流式计算的软件系统 / 64 

4.5 大数据的混合处理计算 / 68 

4.5.1 混合处理计算的概念 / 68 

4.5.2 混合处理计算的软件系统 / 69 

小结 / 78 

习题 / 79 

第5章 数据分析 / 80 

5.1 数据分析概述 / 80 

5.1.1 数据分析的概念和作用 / 80 

5.1.2 数据分析的类型 / 81 

5.1.3 数据分析的流程 / 81 

5.2 统计数据分析方法 / 83 

5.2.1 描述统计 / 83 

5.2.2 相关分析 / 84 

5.2.3 回归分析 / 88 

5.2.4 主成分分析 / 92 

5.3 数据挖掘算法 / 96 

5.3.1 决策树 / 96 

5.3.2 K-Means 算法 / 101 

5.3.3 Apriori 算法 / 106 

5.3.4 神经网络 / 111 

5.4 数据分析工具 / 113 

小结 / 114 

习题 / 114 

第6章 数据可视化 / 117 

6.1 数据可视化概述 / 117 

6.1.1 数据可视化的基本特征 / 119 

6.1.2 数据可视化的作用 / 120 

6.1.3 数据可视化的流程 / 123 

6.2 数据可视化方法 / 126 

6.2.1 文本可视化 / 126 

6.2.2 网络可视化 / 129 

6.2.3 时空数据可视化 / 131 

6.2.4 多维数据可视化 / 134 

6.3 数据可视化软件与工具 / 136 

6.3.1 Excel / 137 

6.3.2 NodeXL / 137 

6.3.3 Processing / 138 

6.3.4 R / 139 

6.3.5 ECharts / 139 

6.3.6 Wolfram Mathematica / 141 

小结 / 141 

习题 / 142 

第7章 数据安全与隐私 / 143 

7.1 大数据安全概述 / 143 

7.1.1 大数据安全体系结构 / 148 

7.1.2 大数据安全 / 150 

7.2 数据安全协议 / 157 

7.3 数据隐私 / 159 

7.4 数据信息共享与隐私信息融合 / 160 

7.5 云环境下的大数据安全与隐私保护 / 163 

小结 / 165 

习题 / 165 

第8章 大数据应用 / 166 

8.1 互联网商业应用 / 166 

8.1.1 用户画像 / 166 

8.1.2 大数据精准营销 / 169 

8.1.3 互联网金融 / 171 

8.2 行业大数据 / 173 

8.2.1 教育大数据 / 173 

8.2.2 电力大数据 / 174 

8.2.3 医疗大数据 / 177 

8.3 人工智能应用 / 179 

8.3.1 语音识别和机器翻译 / 179 

8.3.2 共享经济 / 180 

8.3.3 智慧城市 / 183 

小结 / 187 

习题 / 188 

第9章 数据思维 / 189 

9.1 大数据时代的挑战 / 189 

9.2 大数据时代的思维变革 / 194 

9.2.1 第四范式 / 194 

9.2.2 数据的混杂性 / 195 

9.2.3 样本与总体 / 196 

9.2.4 数据的相关关系与因果关系 / 197 

9.2.5 大数据与幸存者偏差 / 198 

9.3 大数据激发创造力 / 199 

9.3.1 大数据预测电影票房 / 199 

9.3.2 利用大数据治理纽约 / 200 

9.3.3 大数据助力总统竞选 / 202 

9.4 数据科学展望 / 204 

9.4.1 开放数据运动 / 204 

9.4.2 数据科学家所需的专业技能 / 206 

9.4.3 数据科学的发展前景 / 208 

小结 210 

习题 210 

参考文献 / 211
点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP