目录 1 Introduction 1.1 Historical development from Geometry to Finsler Geometry 1.1.1 Origin of Geometry 1.1.2 Euclidean and Riemannian geometryFinsler Geometry 1.2 Differentiable Manifolds 1.2.1 n-dimensional Topological manifold 1.3 Curve and Line Element 1.4 Finsler Space 1.5 Physical motivation 1.6 .Tangent Space, Indicatrix and Minkowskian Space 1.6.1 Tangent Space 1.6.2 Indicatrix 1.6.3 Minkowskian Space 1.7 Finsler connections 1.7.1 Cartans Connection 1.7.2 Runds Connection 1.7.3 Berwalds connection 1.7.4 Hashiguchis connection 1.8 Special Finsler Spaces 1.8.1 Definitions of some special Finsler spaces 1.8.2 Finsler space with (a, β)-metric 1.8.3 Finsler space with (Y, β)-metric 1.9 Intrinsic fields of orthonormal frames 1.9.1 Two-dimensional Finsler space 1.9.2 Three-dimensional Finsler space 1.9.3 Four-dimensional Finsler space 2 Generalized C"-Reducible Finsler Space 2.1 Introduction 2.2 Basic concept of generalized Cv-Reducible Finsler Space offirst kind 2.3 Generalized C”-Reducible Finsler Space of type Ⅰ 2.4 Generalized C"-Reducible Finsler Space of type Ⅱ 2.5 Basic concept of generalized Cv-Reducible Finsler Space ofsecond kind 2.6 Generalized Cv-Reducible Finsler Space of type Ⅲ 2.7 Generalized Cv-Reducible Finsler Space of type Ⅳ 3 On Finsler space with generalized (a, β)-Metric 3.1 Introduction 3.2 Preliminaries 3.3 Berwald frame for Two-dimensional generalized (a, B)-Metric 3.4 Main scalar of Two-dimensional generalized (a, B)-metric 3.5 Landsberg and Berwald spaces with generalized (a, B)-Metric 3.6 Landsberg and Berwald spaces with m-generalized Kropina metric 4 On Finsler spaces with unified main scalar (LC) is of theform L2C2 =f(y)+g(x) 4.1 Introduction 4.2 The condition L2C2 = f(y) + g(x) 4.3 Landsberg and Berwald spaces satisfying the condition L2C2 –f(y)+g(x) 5 On Finsler space with h-Randers conformal change 5.1 Introduction 5.2 Cartans connection of Fn 5.3 Some properties of h-Randers conformal change 5.4 Geodesic Spray coefficients of Fn
以下为对购买帮助不大的评价