• 细胞电生理学基本原理与膜片钳技术
  • 细胞电生理学基本原理与膜片钳技术
  • 细胞电生理学基本原理与膜片钳技术
  • 细胞电生理学基本原理与膜片钳技术
  • 细胞电生理学基本原理与膜片钳技术
  • 细胞电生理学基本原理与膜片钳技术
  • 细胞电生理学基本原理与膜片钳技术
  • 细胞电生理学基本原理与膜片钳技术
  • 细胞电生理学基本原理与膜片钳技术
21年品牌 40万+商家 超1.5亿件商品

细胞电生理学基本原理与膜片钳技术

108 八五品

仅1件

河北石家庄
认证卖家担保交易快速发货售后保障

作者关兵才、张海林、李之望 编

出版社科学出版社

出版时间2012-11

版次1

装帧平装

货号6.2

上书时间2025-01-07

丽萍书店

已实名 进店 收藏店铺

   商品详情   

品相描述:八五品
图书标准信息
  • 作者 关兵才、张海林、李之望 编
  • 出版社 科学出版社
  • 出版时间 2012-11
  • 版次 1
  • ISBN 9787030358455
  • 定价 88.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 388页
  • 字数 553千字
  • 正文语种 简体中文
【内容简介】
  《细胞电生理学基本原理与膜片钳技术》主要内容为:细胞膜的电学效应及其等效电路的分析,膜片钳实验系统工作原理、伪迹信号的消除和各种误差的补偿,电极的制备与溶液的配制,降低噪声和排除干扰的方法,膜片钳实验操作步骤与注意事项,膜片钳技术的扩展性应用,细胞电生理实验标本的制备,各种离子通道的生物物理及电生理学特性,细胞电生理学常见问题解答等,其中穿插与电生理学相关的电学基础知识、细胞电生理实践经验的介绍以及对某些理论问题较为深入的探讨。
【作者简介】
  关兵才,1988年毕业于兰州大学生物系,获理学学士学位;1993年毕业于同济医科大学生理学专业,获医学硕士学位;2004年~2007年在美国俄勒冈健康科学大学从事博士后研究;2007年~2008年于新加坡国家心脏中心做助研。因个人兴趣及环境条件使然,在电学、物化等电生理相关学科有较扎实的基础,对电生理的理解有一定独到之处,并有较丰富的实践经验,曾首次将全细胞膜片钳技术成功应用于耳蜗螺旋动脉段的在位平滑肌细胞。主要从事初级感觉传入信息的调制、血管细胞间缝隙连接以及细胞电生理技术本身的研究。发表学术论文20余篇,曾获湖北省自然科学优秀学术论文一等奖、武汉市优秀科技论文二等奖。现为生理学副教授、电生理高级实验师。
  另外,提倡科学思维与哲学思想的再融合,并对太极拳学、英国语言文学等有较深入的涉猎,著有《英语学习之路》(外文出版社)等。
【目录】
前言
第一章绪论
第一节细胞电生理学及其技术概述
第二节细胞电生理学发展简史
第三节怎样学习掌握细胞电生理学及其技术
一、调整改善电生理学工作者的知识结构
二、理论与实践相互促进
主要参考文献

第二章细胞膜电学效应基本原理
第一节离子通道与跨膜离子浓度梯度共同构成“微电池”
一、离子通道与其可通透的离子构成以离子的平衡电位为电动势的浓差电池
二、离子平衡电位的计算——Nernst公式
三、体液中主要离子的平衡电位
四、离子通道的电导及用一段含源电路的欧姆定律描述离子通道
五、离子电流的反转电位(零电流电位)初说
第二节细胞膜及细胞内液、细胞外液的电容效应
第三节离子泵的双重电学效应
一、离子泵的活动既是通道电源效应的前提,本身又可直接产生电源效应
二、钠钾泵电流的平衡电位
第四节其他膜转运蛋白的电学效应
一、细胞膜上的其他转运蛋白
二、例解:钠钙交换体及其平衡电位
第五节细胞膜的电路模型及其初步分析
第六节细胞膜对离子的通透性与GoldmanHodgkinKatz方程
一、离子的扩散与在电场中的运动:扩散系数与离子淌度及其影响因素
二、膜对离子的通透性与电导
三、GHK电流方程和电压方程
主要参考文献

第三章膜片钳技术基本理论与方法
第一节膜片钳技术概述
一、“膜片钳”的基本含义
二、膜片钳记录的基本构型
第二节膜电位钳制条件下检测膜电流的意义简析
一、为何在细胞电生理学研究中常需要钳制膜电位?
二、膜电位钳制在稳恒水平时的通道电流简析
三、当膜电位从一个钳制水平阶跃到另一水平时的通道电流简析
四、再说反转电位
第三节膜片钳技术基本原理
一、膜电位钳制和电流检测的实现
二、电流钳制与膜电位的监测
第四节偏移电位的补偿
一、什么是偏移电位
二、为什么要补偿偏移电位
三、怎样补偿偏移电位及其变化(主要是液接电位的变化)
四、液接电位的测量
五、不同记录构型下的偏移电位补偿
六、局部灌流产生的界面电位和改变浴液Cl-浓度引起的电极电位改变的补偿
七、结语
第五节电压钳模式下的电容补偿和串联电阻补偿
一、电容补偿
二、串联电阻的补偿
第六节漏电流的含义及其减除的意义和方法
一、漏电流的含义
二、膜片钳中的漏电流减除
第七节膜片钳实验中信号的基本处理——滤波与采样
一、滤波
二、采样
第八节细胞浴液和电极内液的配制及保存
一、细胞浴液
二、电极内液
第九节膜片钳实验用电极的制备和安装
一、Ag/AgCl电极丝和玻璃微电极的制备
二、接地电极和记录电极的安装
第十节膜片钳实验基本操作步骤、细节说明及注意事项
一、全细胞式膜片钳基本操作步骤、细节说明及注意事项
二、单通道记录基本操作说明
三、其他注意事项
第十一节噪声与干扰及其排除方法
一、膜片钳记录系统本身的噪声
二、干扰及其排除方法
第十二节穿孔全细胞膜片钳技术
一、概述
二、常用穿孔剂的作用特点和使用方法
三、穿孔全细胞膜片钳技术的优缺点
主要参考文献

第四章膜片钳技术的扩展性应用
第一节离体脑片膜片钳记录技术
一、离体脑片的制备及培养
二、脑片膜片钳记录的实验装置
三、离体脑片膜片钳记录的基本操作步骤
四、离体脑片膜片钳记录的应用
五、脑片膜片钳记录技术的几点说明
第二节应用膜片钳技术检测细胞的分泌活动
一、全细胞记录构型的等效电路
二、膜电容检测的时域法
三、膜电容检测的频域法
四、膜电容检测示例
五、膜电容检测技术相关问题的讨论
第三节穿孔囊泡外面朝外式单通道记录
第四节高阻封接宏膜片钳记录
第五节松膜片钳技术
一、概述
二、松膜片钳技术的实施方案
第六节巨裁膜片钳技术
主要参考文献

第五章自动膜片钳技术
一、自动膜片钳技术原理
二、传统膜片钳技术与自动膜片钳技术比较
三、自动膜片钳技术的应用
四、结语与展望
【附】自动膜片钳仪器简介
主要参考文献

第六章细胞电生理实验标本的制备及记录中的加药方式
第一节细胞电生理实验标本的制备
一、急性或新鲜分离细胞标本
二、培养细胞标本
三、表达细胞
四、脑片标本
五、微动脉段标本
六、溶液的配制
第二节细胞电生理实验中的加药方式
一、细胞外给药
二、细胞内给药
主要参考文献

第七章钠通道
第一节电压门控性钠通道概述
一、电压门控性钠通道的分子结构
二、电压门控性钠通道的命名和分类
三、电压门控性钠通道的基因
四、电压门控性钠通道的功能
第二节电压门控性钠通道的离子通透性和门控机制
一、电压门控性钠通道的通透性
二、电压门控性钠通道的门控机制
第三节电压门控性钠通道的生物物理学特征
一、电压门控性钠通道的电流电压关系曲线
二、电压门控性钠通道的激活与失活特征
第四节常用钠通道调节剂及作用机制
一、钠通道工具药
二、局部麻醉药
三、抗癫痫药
四、Ⅰ类抗心律失常药
主要参考文献

第八章钙通道
第一节概述
第二节电压门控性钙通道的结构及生物物理学特性
第三节电压门控性钙通道的离子通透性和门控机制
一、电压门控性钙通道的选择性和通透性
二、电压门控性钙通道的门控机制
第四节各类电压门控性钙通道的特征、分布和功能
一、L型钙通道
二、T型钙通道
三、P/Q型钙通道
四、N型钙通道
五、R型钙通道
第五节电压门控性钙通道的药理特性
一、激动剂
二、阻滞剂
三、药物作用机制
第六节其他类型钙通道
一、受体操纵性钙通道
二、钙库调控性钙通道
三、IP3受体
四、ryanodine受体
主要参考文献

第九章钾通道
第一节电压门控性钾通道概述
第二节钾通道的结构及功能特性
一、钾通道对钾离子的选择性
二、钾通道的门控结构
三、电压门控性钾通道的电压敏感性
四、电压门控性钾通道的失活
第三节不同种类电压门控性钾通道的电生理记录方法
一、A型钾通道
二、延迟外向整流钾通道
三、介导M电流的电压门控性钾通道
四、超速激活的延迟整流钾通道
第四节电压门控性钾通道的生理功能及病理意义
第五节电压门控性钾通道的药理特性
第六节其他类型钾通道
一、钙激活的钾通道
二、内向整流性钾通道
三、双孔区钾通道
四、内向整流性钾通道、双孔区钾通道与电压门控性钾通道亚基的基本结构比较
主要参考文献

第十章氯通道
第一节钙激活的氯通道
一、CACC通道的分子基础
二、CACC通道拓扑结构
三、CACC通道的生理作用
四、CACC通道的生物物理学特性
五、CACC通道离子通透及门控机制
六、常用CACC通道调节剂及作用机制
第二节电压依赖性氯通道
一、ClC通道家族简介
二、ClC通道的拓扑及三维结构
三、ClC通道的生理作用
四、ClC通道的生物物理学特性
五、ClC通道离子通透性及门控机制
六、常用ClC通道的调节剂
第三节环核苷酸激活的氯通道
一、环核苷酸激活的氯通道简介
二、CFTR通道的结构及生理特性
三、CFTR通道的生理功能
第四节细胞体积调节的氯通道
一、细胞体积调节的氯通道简介
二、细胞体积调节的氯通道生理学特性
第五节氯通道研究及分析方法
一、氯通道研究中电极内外液构成及注意事项
二、Ussing槽和短路电流记录方法
主要参考文献

第十一章配体门控离子通道
第一节配体门控离子通道的界定
第二节尼古丁型胆碱能受体通道
一、尼古丁型胆碱能受体通道概述
二、尼古丁型AChR的激活与阻断
三、尼古丁型ACh受体激活电流的浓度效应关系
四、尼古丁型ACh受体通道功能的别构性调制
第三节5羟色胺3受体通道
一、5羟色胺3受体通道概述
二、5HT激活电流的浓度效应关系
三、5HT激活电流的电流电压关系
四、5HT3R功能的调制
第四节γ氨基丁酸A型受体通道
一、γ氨基丁酸A型受体通道概述
二、GABAAR功能的调制
第五节离子型谷氨酸受体
一、离子型谷氨酸受体概述
二、离子型谷氨酸受体的功能特征和意义
三、NMDAR的亚基组成及其配体
四、AMPAR与NMDAR的协同作用
五、NMDAR介导电流的调制
第六节离子型ATP(P2X)受体通道
一、离子型ATP(P2X)受体通道
二、P2XR功能的调制
第七节LGIC的表型和基因型的关系
一、躯体感觉传入神经元P2XR的表型与基因型的关系
二、内脏感觉传入神经元P2XR的表型与基因型的关系
第八节酸感受性离子通道的电生理研究
一、酸感受性离子通道概述
二、大鼠DRG神经元4种类型H+门控离子通道电流
第九节TRP通道的电生理研究
一、TRP通道概述
二、TRP通道与温度感觉及伤害性感觉
三、TRPV通道
第十节GPCR对LGIC功能的调节作用
一、缓激肽受体激活对5TH3受体介导电流的增强作用
二、缩宫素受体激活对P2X受体介导电流的负性调制作用
三、P物质激活其NK1受体对GABAAR及5HT3R功能的反向调制作用
主要参考文献

第十二章细胞电生理学常见问题解答
一、什么是膜输入电阻、膜电阻、膜比电阻、被动膜电阻、膜输入电容?
二、什么是时间常数和空间常数?
三、膜片钳中的命令电压、维持电压、刺激电压有何区别?
四、什么是维持电流?
五、膜电位升高、降低、增大、减小的使用是否有统一规定?
六、什么是通道的整流特性?
七、入口电阻和串联电阻是否是一回事?
八、为什么用于量效关系曲线拟合的Hill方程在不同文献中形式不同?Hill系数的含义是什么?
九、什么是尾电流?测定尾电流有何意义?
十、Rundown、脱敏、失活、衰减几个概念有什么区别?
十一、请解释电压依赖性离子通道的激活、失活、去活、复活几个概念
十二、如何获得电压门控离子通道的激活曲线和失活曲线?
十三、在全细胞膜片钳的电压钳模式下,把维持电位设定于静息电位水平,为什么加入神经兴奋性药物还会引起电压依赖性通道(如钠通道)开放而产生动作电流?
十四、全细胞膜片钳实验中,因串联电阻的影响造成的钳位误差有何基本规律?
十五、细胞膜对不同离子的电导之比等于通透系数之比吗?
十六、电极内液和细胞浴液的渗透压哪个略大为宜?
十七、膜片钳实验中电极与细胞膜之间封接不佳对电流记录有什么影响?
十八、Nernst平衡电位、GoldmanHodgkinKatz平衡电位和Donnan平衡电位有什么区别?
十九、什么是漏电流?
二十、什么是门控电流?
二十一、什么是窗口电流?
二十二、EGTA、EDTA和BAPTA的作用有何不同?
二十三、膜片钳实验中,电极进入浴液后电流基线漂移该如何处理?
二十四、膜片钳初学者使用Axon膜片钳实验系统如何起步?
二十五、使用Axon膜片钳实验系统时,在哪里设置维持电位为佳?
二十六、膜片钳实验中,玻璃电极进入浴液后,测试电压方波引起的响应电流方波幅度变大、变小或消失是何原因?
二十七、用Axon膜片钳实验系统在封接过程中,某一个或数个被监测的电学参数值为何变成红色箭头?
二十八、用Axon膜片钳实验系统在封接过程中或破膜后监测电学参数时,调节测试更新速率为何会引起电学参数值的变化?
二十九、平衡电位、反转电位和零电流电位是一回事吗?
三十、为什么电极刚进入浴液后,膜片钳放大器总是出现饱和现象?
三十一、如何排除50Hz的正弦波工频干扰?
三十二、可兴奋细胞膜的阈电位的电学实质是什么?
三十三、什么是空间钳位误差?如何避免之?
三十四、用Axon公司的膜片钳实验系统,如何同时进行电压刺激下的电流反应记录和电流的连续性背景记录?
三十五、对于药物引起的电流和电压激活的电流,使用斜坡电压刺激做IV曲线分别有什么要求?
三十六、膜片钳实验中,能否根据电压钳模式下的膜输入电阻和加药引起的电流幅度,推测电流钳模式下同样的加药刺激引起的膜电位变化幅度?
三十七、膜片钳记录数据中的电流和电压基本参考方向(正方向)是怎样约定的?
三十八、细胞膜在非钳压状态下,如果出现内向电流或外向电流,膜电位会如何改变(去极化还是超极化)?
主要参考文献
附录细胞电生理学与膜片钳技术专业术语英中文对照表
作者简介
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP