• 从狭义相对论到费恩曼图
  • 从狭义相对论到费恩曼图
21年品牌 40万+商家 超1.5亿件商品

从狭义相对论到费恩曼图

50 5.9折 85 全新

仅1件

上海浦东
认证卖家担保交易快速发货售后保障

作者[意]Riccardo、D’Auria(R.道里亚) 著

出版社世界图书出版公司

出版时间2016-07

版次1

装帧平装

上书时间2024-11-05

上海书友屋的书摊

已实名 进店 收藏店铺

   商品详情   

品相描述:全新
图书标准信息
  • 作者 [意]Riccardo、D’Auria(R.道里亚) 著
  • 出版社 世界图书出版公司
  • 出版时间 2016-07
  • 版次 1
  • ISBN 9787510098840
  • 定价 85.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
【内容简介】

  该书填补了经典量子力学和相对量子力学及场论之间的空白。重点讲述了现代理论物理学中的对称性作用。因此该书非常适合于对基本粒子物理和相对论的现代发展较深层次的知识有兴趣的学生的阅读,即使他们不是这个研究领域的。该书除了适合实验和应用物理学家阅读外,针对未来凝聚态场论方法 、加速器物理以及那些需要先进的、复杂的理论物理背景的现代技术领域的科研活动,还适合那些需要了解高能物理的先进理论的工程师。

【作者简介】

  Riccardo D’Auria(R.道里亚,意大利),是国际知名学者,在物理学界享有盛誉。本书凝聚了作者多年科研和教学成果,适用于科研工作者、高校教师和研究生。

【目录】

1 Special Relativity
  1.1 The Principle of Relativity
    1.1.1 Galilean Relativity in Classical Mechanics
    1.1.2 Invariance of Classical Mechanics Under Galilean Transformations
  1.2 The Speed of Light and Electromagnetism
  1.3 Lorentz Transformations
  1.4 Kinematic Consequences of the Lorentz Transformations
  1.5 Ptoper Time and Space—Time Diagrams
    1.5.1 Space—Time and Causality
  1.6 Composition of Velocities
    1.6.1 Aberration Revisited
  1.7 Experimental Tests of Special Relativity
  Reference
2 Relativistic Dynamics
  2.1 Relativistic Energy and Momentum
    2.1.1 Energy and Mass
    2.1.2 Nuclear Fusion and the Energy of a Star
  2.2 Space—Time and Four—Vectors
    2.2.1 Four—Vectors
    2.2.2 Relativistic Theories and Poincare Transformations
  Reference
3 The Equivalence Principle
  3.1 Inertial and Gravitational Masses
  3.2 Tidal Forces
  3.3 The Geometric Analogy
  3.4 Curvature
    3.4.1 An Elementary Approach to the Curvature
    3.4.2 Parallel Transport
    3.4.3 Tidal Forces and Space—Time Curvature
  3.5 Motion of a Particle in Curved Space—Time
    3.5.1 The Newtonian Limit
    3.5.2 Time Intervals in a Gravitational Field
    3.5.3 The Einstein Equation
  Reference
4 The Poincare Group
  4.1 Linear Vector Spaces
    4.1.1 Covariant and Contravariant Components
  4.2 Tensors
  4.3 Tensor Algebra
  4.4 Rotations in Three—Dimensions
  4.5 Groups of Transformations
    4.5.1 Lie Algebra of the SO(3) Group
  4.6 Principle of Relativity and Covariance of Physical Laws
  4.7 Minkowski Space—Time and Lorentz Transformations
    4.7.1 General Form of (Proper) Lorentz Transformations
    4.7.2 The Poincare Group
  Reference
5 Maxwell Equations and Special Relahvity
  5.1 Electromagnetism in Tensor Form
  5.2 The Lorentz Force
  5.3 Behavior of E and B Under Lorentz Transformations
  5.4 The Four—Current and the Conservation of the Electric Charge
  5.5 The Energy—Momentum Tensor
  5.6 The Four—Potential
    5.6.1 The Spin of a Plane Wave
    5.6.2 Large Volume Limit
  Reference
6 Quantization of the Electromagnetic Field
  6.1 The Electromagnetic Field as an Infinite System of Harmonic Oscillators
  6.2 Quantization of the Electromagnetic Field
  6.3 Spin of the Photon
  Reference
7 Group Representations and Lie Algebras
  7.1 Lie Groups
  7.2 Representations
  7.3 Infinitesimal Transformations and Lie Algebras
  7.4 Representation of a Group on a Field
    7.4.1 Invariance of Fields
    7.4.2 Infinitesimal Transformations on Fields
    7.4.3 Application to Non—Relativistic Quantum Mechanics
  Reference
8 Lagrangian and Hamiltonian Formalism
  8.1 Dynamical System with a Finite Number of Degrees of Freedom
    8.1.1 The Action Principle
    8.1.2 Lagrangian of a Relativistic Particle
  8.2 Conservation Laws
    8.2.1 The Noether Theorem for a System of Particles
  8.3 The Hamiltonian Formalism
  8.4 Canonical Transformations and Conserved Quantities
    8.4.1 Conservation Laws in the Hamiltonian Formalism
  8.5 Lagrangian and Hamiltonian Formalism in Field Theories
    8.5.1 Functional Derivative
    8.5.2 The Hamilton Principle of Stationary Action
  8.6 The Action of the Electromagnetic Field
    8.6.1 The Hamiltonian for an Interacting Charge
  8.7 Symmetry and the Noether Theorem
  8.8 Space—Time Symmetries
    8.8.1 Internal Symmetries
  8.9 Hamiltonian Formalism in Field Theory
    8.9.1 Symmetry Generators in Field Theories
  Reference
9 Quantum Mechanics Formalism
  9.1 Introduction
  9.2 Wave Functions, Quantum States and Linear Operators
  9.3 Unitary Operators
    9.3.1 Application to Non—Relativistic Quantum Theory
    9.3.2 The Time Evolution Operator
  9.4 Towards a Relativistically Covariant Description
    9.4.1 The Momentum Representation
    9.4.2 Particles and Irreducible Representations of the Poincare Group
  9.5 A Note on Lorentz Invariant Normalizations
  Reference
10 Relativistic Wave Equations
  10.1 The Relativistic Wave Equation
  10.2 The Klein—Gordon Equation
    10.2.1 Coupling of the Complex Scalar Field φ(x) to the Electromagnetic Field
  10.3 The Hamiltonian Formalism for the Free Scalar Field
  10.4 The Dirac Equation
    10.4.1 The Wave Equation for Spin 1/2 Particles
    10.4.2 Conservation of Probability
    10.4.3 Covariance of the Dirac Equation
    10.4.4 Infinitesimal Generators and Angular Momentum
  10.5 Lagrangian and Hamiltonian Formalism
  10.6 Plane Wave Solutions to the Dirac Equation
    10.6.1 Useful Properties of the u(p, r) and v(p, r) Spinors
    10.6.2 Charge Conjugation
    10.6.3 Spin Projectors
  10.7 Dirac Equation in an External Electromagnetic Field
  10.8 Parity Transformation and Bilinear Forms
    10.8.1 Bilinear Forms
  Reference
11 Quantu:ation of Boson and Fermion Fields
  11.1 Introduction
  11.2 Quantization of the Klein—Gordon Field
    11.2.1 Electric Charge and its Conservation
  11.3 Transformation Under the Poincare Group
    11.3.1 Discrete Transformations
  11.4 Invariant Commutation Rules and Causality
    11.4.1 Green‘s Functions and the Feynman Propagator
  11.5 Quantization of the Dirac Field
  11.6 Invariant Commutation Rules for the Dirac Field
    11.6.1 The Feynman P;ropagator for Ferrruons
    11.6.2 Transformation Properties of the Dirac Quantum Field
    11.6.3 Discrete Transformations
  11.7 Covariant Quantization of the Electromagnetic Field
    11.7.1 Indefinite Metric and Subsidiary Conditions
    11.7.2 Poincare Transformations and Discrete Symmetries
  11.8 Quantum Electrodynamics
  Reference
12 Fields in Interaction
  12.1 Interaction Processes
  12.2 Kinematics of Interaction Processes
    12.2.1 Decay Processes
    12.2.2 Scattering Processes
  12.3 Dynamics of Interaction Processes
    12.3.1 Interaction Representation
    12.3.2 The Scattering Matrix
    12.3.3 Two-Particle Phase-Space Element
    12.3.4 The Optical Theorem
    12.3.5 Natural Units
    12.3.6 The Wick‘s Theorem
  12.4 Quantum Electrodynamics and Feynman Rules
    12.4.1 External Electromagnetic Field
  12.5 Amplitudes in the Momentum Representation
    12.5.1 M611er Scattering
    12.5.2 A Comment on the Role of Virtual Photons
    12.5.3 Bhabha and Electron-Muon Scattering
    12.5.4 Compton Scattering and Feynrnan Rules
    12.5.5 Gauge Invariance of Amplitudes
    12.5.6 Interaction with an External Field
  12.6 Cross Sections
    12.6.1 The Bahbha Scattering
    12.6.2 The Compton Scattering
  12.7 Divergent Diagrams
  12.8 A Pedagogical Introduction to Renormalization
    12.8.1 Power Counting and Renormalizability
    12.8.2 The Electron Self-Energy Part
    12.8.3 The Photon Self-Energy
    12.8.4 The Vertex Part
    12.8.5 One-Loop Renormalized Lagrangian
    12.8.6 The Electron Anomalous Magnetic Moment
  Reference
Appendix A: The Eotvos‘ Experiment
Appendix B: The Newtonian Limit of the Geodesic Equation
Appendix C: The Twin Paradox
Appendix D: Jacobi Identity for Poisson Brackets
Appendix E: Induced Representations and Little Groups
Appendix F: SU(2) and SO(3)
Appendix G: Gamma Matrix Identifies
References
Index

内容摘要
该书填补了经典量子力学和相对量子力学及场论之间的空白。重点讲述了现代理论物理学中的对称性作用。因此该书非常适合于对基本粒子物理和相对论的现代发展较深层次的知识有兴趣的学生的阅读,即使他们不是这个研究领域的。该书除了适合实验和应用物理学家阅读外,针对未来凝聚态场论方法 、加速器物理以及那些需要先进的、复杂的理论物理背景的现代技术领域的科研活动,还适合那些需要了解高能物理的先进理论的工程师。

主编推荐
Riccardo D’Auria(R.道里亚,意大利)是国际知名学者,在物理学界享有盛誉。本书凝聚了作者多年科研和教学成果,适用于科研工作者、高校教师和研究生。

点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP