• 贝叶斯数据分析——基于R与Python的实现(基于R应用的统计学丛书
21年品牌 40万+商家 超1.5亿件商品

贝叶斯数据分析——基于R与Python的实现(基于R应用的统计学丛书

批量上传,套装书可能不全,下单前咨询在线客服!有特殊要求,下单前请咨询客服!

19.2 4.2折 46 全新

库存4件

江西南昌
认证卖家担保交易快速发货售后保障

作者吴喜之

出版社中国人民大学出版社

ISBN9787300283258

出版时间2020-07

装帧平装

开本其他

定价46元

货号29001069

上书时间2024-11-19

思源汇书店

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
导语摘要

贝叶斯统计是和基于频率的传统统计 (频率派统计) 不同的一套关于统计推断或决策 
的理论、方法与实践. 本书除了介绍贝叶斯统计的基本概念之外, 还介绍了不同贝叶斯模型的数学背景、与贝叶斯模型对应的各种计算方法, 并基于数据例子来介绍如何通过各种软件实现数据分析.本书使用的软件是以 R 为平台的 Stan 和以 Python 为平台的 PyMC3, 它们都是人们喜爱的*的基于 MCMC 和C   编译器的贝叶斯编程软件. 相信读者能够通过实践掌握它们。
本书希望使对贝叶斯统计感兴趣的广大群体获得强有力的计算能力, 以发挥他们无穷的想象力和创造力.



作者简介

吴喜之,北京大学数学力学系本科,美国北卡罗来纳大学统计博士。中国人民大学统计学院教授,博士生导师。曾在美国加利福尼亚大学、北卡罗来纳大学以及南开大学、北京大学等多所著名学府执教。



目录

部分 基础篇
第1章 引言
1.1 为什么用贝叶斯
1.1.1 传统数理统计的先天缺陷
1.1.2 贝叶斯方法是基于贝叶斯定理发展起来的用于系统地阐述和解决统计问题的方法
1.2 本书所强调的贝叶斯编程计算的意义
1.3 本书的构成和内容安排
1.4 习题
第2章 基本概念
2.1 概率的规则及贝叶斯定理
2.1.1 概率的规则
2.1.2 概率规则的合理性、贝叶斯定理、优势比、后验分布
2.1.3 贝叶斯和经典统计基本概念的一些比较
2.2 决策的基本概念
2.3 贝叶斯统计的基本概念
2.3.1 贝叶斯定理
2.3.2 似然函数
2.3.3 后验分布包含的信息
2.3.4 几个简单例子
2.3.5 先验分布的形式
2.4 共轭先验分布族
2.4.1 常用分布及其参数的共轭先验分布*
2.4.2 指数先验分布族的一些理论结果* 
2.5 习题
第3章 基本软件: R和Python
3.1 R 简介?D?D为领悟而运行
3.1.1 简介
3.1.2 安装和运行小贴士
3.1.3 动手
3.1.4 实践
3.2 Python 简介?D?D为领悟而运行
3.2.1 引言
3.2.2 安装
3.2.3 基本模块的编程
3.2.4 Numpy 模块
3.2.5 Pandas 模块
3.2.6 Matplotlib 模块
3.3 习题
第二部分 几个常用初等贝叶斯模型71
第4章 比例的推断: Bernoulli 试验
4.1 采用简单共轭先验分布
4.1.1 例4.1 的关于θ的后验分布及其密度区域
4.1.2 例4.1 的关于θ 的密度区域的R 代码计算
4.1.3 例4.1 的关于θ 的密度区域的Python 代码计算
4.2 稍微复杂的共轭先验分布
4.2.1 模型(4.2.1) ~ (4.2.3) 拟合例
4.2 数据直接按公式计算的R 代码
4.2.2 模型(4.2.1) ~ (4.2.3) 拟合例
4.2 数据直接按公式计算的Python 代码
4.3 习题
第5章 发生率的推断: Poisson 模型
5.1 Poisson 模型和例子
5.2 对例5.1 的分析和计算
5.2.1 通过R代码利用公式分析例5.1
5.2.2 例5.1 密度区域的Python代码
5.3 习题
第6章 正态总体的情况
6.1 正态分布模型
6.2 均值未知而精度已知的情况
6.2.1 利用公式(6.2.1)、(6.2.2) 拟合例6.1 的数据(R)
6.2.2 利用公式(6.2.1)、(6.2.2) 拟合例6.1 数据的后验密度区域(Python) 
6.3 两个参数皆为未知的情况
6.3.1 使用公式(6.3.1)、(6.3.2) 对例6.1 的分析(R) 
6.3.2 使用公式(6.3.1)、(6.3.2) 对例6.1 的分析(Python)
6.4 习题
第三部分 算法、概率编程及贝叶斯专门软件
第7章 贝叶斯推断中的一些算法
7.1 后验概率法
7.2 拉普拉斯近似
7.3 马尔可夫链蒙特卡罗方法
7.3.1 蒙特卡罗积分
7.3.2 马尔可夫链
7.3.3 MCMC 方法综述
7.3.4 Metropolis 算法
7.3.5 Metropolis-Hastings 算法
7.3.6 Gibbs 抽样
7.3.7 Hamiltonian 蒙特卡罗方法
7.4 EM 算法
7.5 变分贝叶斯近似
第8章 概率编程/贝叶斯编程
8.1 引言
8.2 概率编程概述
8.2.1 概率编程要点
8.2.2 先验分布的选择?D?D从概率编程的角度
8.3 贝叶斯计算专用软件
8.4 R/Stan
8.4.1 概述
8.4.2 安装
8.4.3 对例8.1 的数据运行R/Stan 
8.5 Python/PyMC3
8.5.1 概述
8.5.2 安装
8.5.3 对例8.1 的数据运行Python/PyMC3
8.6 通过一个著名例子进一步熟悉R/Stan 和Python/PyMC3
8.6.1 R/Stan 关于例8.2 的模型(8.6.1) ~ (8.6.4) 的代码



内容摘要

贝叶斯统计是和基于频率的传统统计 (频率派统计) 不同的一套关于统计推断或决策 
的理论、方法与实践. 本书除了介绍贝叶斯统计的基本概念之外, 还介绍了不同贝叶斯模型的数学背景、与贝叶斯模型对应的各种计算方法, 并基于数据例子来介绍如何通过各种软件实现数据分析.本书使用的软件是以 R 为平台的 Stan 和以 Python 为平台的 PyMC3, 它们都是人们喜爱的*的基于 MCMC 和C   编译器的贝叶斯编程软件. 相信读者能够通过实践掌握它们。
本书希望使对贝叶斯统计感兴趣的广大群体获得强有力的计算能力, 以发挥他们无穷的想象力和创造力.



主编推荐

吴喜之,北京大学数学力学系本科,美国北卡罗来纳大学统计博士。中国人民大学统计学院教授,博士生导师。曾在美国加利福尼亚大学、北卡罗来纳大学以及南开大学、北京大学等多所著名学府执教。



精彩内容

贝叶斯统计是和基于频率的传统统计(频率派统计) 不同的?套关于统计推断或决策的理论、?法与实践. 传统统计由于其概率是?频率定义的, 因此有其天?的弱点和缺陷,许多推断问题?法得到明确的结论. 贝叶斯统计的思维?式与传统统计不同, 成为与传统统计平?的决策体系. 在不同的数据分析问题中, 这两种决策体系各有优劣. 但关于这两种体系在哲学意义上优劣的争论则从来也没有停?过. 当然, 实际?作者们则不会在意这些争论, ?是选择能够达到他们?标的?法, ?论是贝叶斯?法还是传统统计?法.
贝叶斯思维在统计建模和数据分析??具有许多优点. 它提供了?种根据近的知识更新信仰的机器学习过程. 例如, 它提供?经典统计更具有概率意义的推断, 它还可以使?现代抽样?法评估嵌套模型和?嵌套模型(区别传统?法) 的概率, 它也很容易拟合使?经典?法很难应付的复杂随机效应模型.
在前计算机时代, 贝叶斯统计的发展曾经被计算资源的有限性拖累, 现在这个问题已经不存在了. ?前贝叶斯建模急剧增长的两个主要原因是: (1) 计算贝叶斯后验分析所需的各种积分算法的持续发展; (2) 现代计算速度的不断加快. 现在?们完全可以使?贝叶斯模型来拟合传统统计?法?法应付的?常复杂的模型.
和传统频率派数理统计类似, 纯粹贝叶斯派的统计属于模型驱动的范畴, 这两种统计与数据驱动或问题驱动的现代数据科学理念有不?的差距. 然?, 贝叶斯统计的某些思维模式对于数据科学的机器学习?法有很?的启发. 除了数据科学常?的朴素贝叶斯分类和贝叶斯?络之外, 在神经?络和深度学习等完全是数据驱动的实践中, 到处都可以看到贝叶斯的影?. 当然, 这些可能不被纯粹的贝叶斯派公开认可, 但的确是受到贝叶斯统计思维的影响. 长期以来, 在英?中, 纯粹贝叶斯派?法?\Bayesian' 作为形容词, ?那些有些“离经叛道' 的?法只能?\Bayes' 作为形容词. 现在这两者的区别已经不那么. 任何数学体系?对??的应?环境, 不可能也没有必要为保持其``纯洁性' ??步不前.
除了介绍贝叶斯统计的基本概念之外, 本书还介绍了不同贝叶斯模型的数学背景、与贝叶斯模型对应的各种计算?法, 并基于数据例?来介绍如何通过各种软件实现数据分析.本书希望使对贝叶斯统计感兴趣的广大群体获得强有力的计算能力, 以发挥他们无穷的想象力和创造力.
除了R 和Python 之外, 本书基本上平?地使?两个贝叶斯编程的专?软件: 以R 为平台的Stan 和以Python 为平台的PyMC3, 它们都是?们喜爱的的基于MCMC 和C   编译器的贝叶斯编程软件. 之所以平?使?不同软件, 是因为它们各有优缺点, 适?于有不同编程习惯的?. 当然, 不同软件的使?环境不同, 两个软件的应?不可能也没有必要做到百分之百重合, 相信读者能够通过实践掌握它们(?少其中之?).
本书的读者对象既包括希望了解贝叶斯统计数学概念的读者, 也包括那些希望利?贝叶斯模型来做实际数据分析的读者. 本书的计算是由编程软件实现的, 我们希望有更多的?通过这本书学会利?编程软件与数据建模.



   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP