• 【现货速发】离散数学及其应用(英文版·原书第8版)
21年品牌 40万+商家 超1.5亿件商品

【现货速发】离散数学及其应用(英文版·原书第8版)

全新正版书籍,24小时发货,可开发票。

116.5 8.4折 139 全新

库存9件

天津津南
认证卖家担保交易快速发货售后保障

作者[美]肯尼思·H. 罗森(Kenneth H. Rosen)

出版社机械工业出版社

ISBN9787111645306

出版时间2020-01

装帧平装

开本16开

定价139元

货号28511340

上书时间2024-12-19

易安居书舍

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
导语摘要

本书是经典的离散数学教材,被全球数百所大学广为采用。书中全面而系统地介绍了离散数学的理论和方法,主要包括:逻辑和证明,集合、函数、序列、求和与矩阵,算法,数论和密码学,归纳与递归,计数,离散概率,关系,图,树,布尔代数,计算模型。全书取材广泛,除包括定义、定理的严格陈述外,还配备大量的例题、图表、应用实例和练习。第8版做了与时俱进的更新,成为更加实用的教学工具。本书可作为高等院校数学、计算机科学和计算机工程等专业的教材,也可作为科技领域从业人员的参考书。



作者简介

肯尼思·H. 罗森(Kenneth H. Rosen) 于1972年获密歇根大学安娜堡分校数学学士学位,1976年获麻省理工学院数学博士学位。Rosen曾就职于科罗拉多大学、俄亥俄州立大学、缅因大学和蒙茅斯大学,教授离散数学、算法设计和计算机安全方面的课程;他还曾加盟贝尔实验室,并且是AT&T贝尔实验室的杰出技术人员。他的著作《初等数论及其应用》和《离散数学及其应用》均被翻译成多种语言,在全球数百所大学中广为采用。



目录

1 The Foundations: Logic and Proofs....................................1
1.1 Propositional Logic............................................................1
1.2 Applications of Propositional Logic.............................................17
1.3 Propositional Equivalences....................................................26
1.4 Predicates and Quantifiers.....................................................40
1.5 Nested Quantifiers............................................................60
1.6 Rules of Inference.............................................................73
1.7 Introduction to Proofs.........................................................84
1.8 Proof Methods and Strategy....................................................96
End-of-Chapter Material.....................................................115
2 Basic Structures: Sets, Functions, Sequences, Sums, and atrices....................................121
2.1 Sets........................................................................121
2.2 Set Operations...............................................................133
2.3 Functions...................................................................147
2.4 Sequences and Summations...................................................165
2.5 Cardinality of Sets...........................................................179
2.6 Matrices....................................................................188
End-of-Chapter Material.....................................................195
3 Algorithms.........................................................201
3.1 Algorithms..................................................................201
3.2 The Growth of Functions.....................................................216
3.3 Complexity of Algorithms....................................................231
End-of-Chapter Materia.....................................................244
4 Number Theory and Cryptography..................................251
4.1 Divisibility and Modular Arithmetic...........................................251
4.2 Integer Representations and Algorithms........................................260
4.3 Primes and Greatest Common Divisors........................................271
4.4 Solving Congruences.........................................................290
4.5 Applications of Congruences.................................................303
4.6 Cryptography...............................................................310
End-of-Chapter Materia.....................................................324
5 Induction and Recursion............................................331
5.1 Mathematical Induction......................................................331
5.2 Strong Induction and Well-Ordering...........................................354
5.3 Recursive Definitions and Structural Induction..................................365
5.4 Recursive Algorithms........................................................381
5.5 Program Correctness.........................................................393
End-of-Chapter Materia.....................................................398
6 Counting...........................................................405
6.1 The Basics of Counting.......................................................405
6.2 The Pigeonhole Principle.....................................................420
6.3 Permutations and Combinations...............................................428
6.4 Binomial Coeficients and Identities...........................................437
6.5 Generalized Permutations and Combinations...................................445
6.6 Generating Permutations and Combinations....................................457
End-of-Chapter Materia.....................................................461
7 Discrete Probability.................................................469
7.1 An Introduction to Discrete Probability........................................469
7.2 Probability Theory......................................



内容摘要

本书是经典的离散数学教材,被全球数百所大学广为采用。书中全面而系统地介绍了离散数学的理论和方法,主要包括:逻辑和证明,集合、函数、序列、求和与矩阵,算法,数论和密码学,归纳与递归,计数,离散概率,关系,图,树,布尔代数,计算模型。全书取材广泛,除包括定义、定理的严格陈述外,还配备大量的例题、图表、应用实例和练习。第8版做了与时俱进的更新,成为更加实用的教学工具。本书可作为高等院校数学、计算机科学和计算机工程等专业的教材,也可作为科技领域从业人员的参考书。



主编推荐

肯尼思·H. 罗森(Kenneth H. Rosen) 于1972年获密歇根大学安娜堡分校数学学士学位,1976年获麻省理工学院数学博士学位。Rosen曾就职于科罗拉多大学、俄亥俄州立大学、缅因大学和蒙茅斯大学,教授离散数学、算法设计和计算机安全方面的课程;他还曾加盟贝尔实验室,并且是AT&T贝尔实验室的杰出技术人员。他的著作《初等数论及其应用》和《离散数学及其应用》均被翻译成多种语言,在全球数百所大学中广为采用。



   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP