PyTorch机器学习技术图书(全2册)
全新正版 极速发货
¥
154.44
6.8折
¥
228
全新
库存9件
作者王宇龙 等 编
出版社机械工业出版社
ISBN9782200059002
出版时间2024-06
装帧平装
开本16开
定价228元
货号1203312740
上书时间2024-12-03
商品详情
- 品相描述:全新
- 商品描述
-
作者简介
刘斯坦,本科毕业于上海交通大学,硕士毕业于德国慕尼黑工业大学。深度学习资深工程师,从事无人驾驶智能感知系统的研发工作。在德国相关领域从业超过十年,负责无人驾驶系统中多个神经网络模型在量产车的落地以及中国地区的本地化。刘斯坦对深度学习的各个领域不但有着全景式的理解,还具备从数学理论到部署产品线的知识纵深。这种即广又深全面覆盖的知识面,相信能为读者带来更开阔的视野。王宇龙,清华大学计算机博士,大型互联网公司算法专家,在国际学术会议及期刊发表过多篇论文。曾出版书籍《PyTorch深度学习入门与实战》,知乎“机器学习”话题优秀回答者(@Young)。
目录
《PyTorch高级机器学习实战》
《PyTorch自动驾驶视觉感知算法实战》
内容摘要
《PyTorch高级机器学习实战》讲解了经典的高级机器学习算法原理与知识,包括常见的监督学习、无监督学习、概率图模型、核方法、深度神经网络,以及强化学习等内容,同时更强调动手实践。所有算法均利用PyTorch计算框架进行实现,并且在各章节配备实战环节,内容涵盖点击率预估、异常检测、概率图模型变分推断、高斯过程超参数优化、深度强化学习智能体训练等内容。《PyTorch高级机器学习实战》附赠所有案例的源代码及各类学习资料来源,适合具有一定编程基础的人工智能爱好者学习,也是相关从业者和研究人员的学习指南。
《PyTorch自动驾驶视觉感知算法实战》全面介绍了自动驾驶系统中深度学习视觉感知的相关知识,包括深度神经网络和深度卷积神经网络的基本理论,深入讲解了自动驾驶中常用的目标检测、语义、实例分割和单目深度估计四种视觉感知任务。《PyTorch自动驾驶视觉感知算法实战》对自动驾驶工程实践中很重要但经常被忽略的知识进行了全面总结,包括多任务模型的损失平衡、Ubuntu操作系统、Anaconda和Docker等环境配置工具、C++开发环境搭建、神经网络压缩、模型导出和量化、TensorRT推理引擎等和部署相关的技术。《PyTorch自动驾驶视觉感知算法实战》各个任务都由PyTorch实现,模型部署的代码则提供C++实现,并附带一个中等规模的自动驾驶数据集用于示例。所有代码都公开在Github公开源码仓库上,很多代码可以直接用于生产环境,且提供了商业友好的代码许可证。《PyTorch自动驾驶视觉感知算法实战》适用于具备基本机器学习知识,有志于从事自动驾驶算法工作的学生,也适用于刚迈入职场,面对各种陌生技术无所适从的初级工程师。同时,本书也可供中高级算法工程师作为案头常备书籍,以便查阅。
— 没有更多了 —
以下为对购买帮助不大的评价