目录 Preface Part Ⅰ--Algebraic Methods Chapter Ⅰ--Finite fields 1--Generalities 2--Equations over a finite field 3--Quadratic reciprocity law Appendix--Another proof of the quadratic reciprocity law Chapter Ⅱ--p-adic fields 1--The ring Zp and the field Qp 2--p-adic equations 3--The multiplicative group of Qp Chapter Ⅲ--Hilbert symbol 1--Local properties 2--Global properties ChapterⅣ--Quadratic forms over Qp and over Q I--Quadratic forms 2--Quadratic forms over Qp 3--Quadratic forms over Q Appendix--Sums of three squares Chapter Ⅴ--Integral quadratic forms with discriminant ± 1 l--Preliminaries 2--Statement of results 3--Proofs Part Ⅱ--Analytic Methods Chapter Ⅵ--The theorem on arithmetic progressions I--Characters of finite abelian groups 2--Dirichlet series 3--Zeta function and L functions 4---Density and Dirichlet theorem Chapter Ⅶ--Modular forms 1--The modular group 2--Modular functions 3--The space of modular forms 4--Expansions at infinity 5--Hecke operators 6--Theta functions
以下为对购买帮助不大的评价