• PyTorch深度学习实战 构建、训练和部署神经网络模型(原书第2版)
21年品牌 40万+商家 超1.5亿件商品

PyTorch深度学习实战 构建、训练和部署神经网络模型(原书第2版)

全新正版 极速发货

70.32 6.5折 109 全新

库存44件

广东广州
认证卖家担保交易快速发货售后保障

作者(印)普拉迪帕塔·米什拉 著 王文通,刘强 译

出版社机械工业出版社

ISBN9787111759195

出版时间2024-08

装帧平装

开本16开

定价109元

货号1203357514

上书时间2024-12-02

曲奇书店

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
作者简介
关于作者Pradeepta Mishra 是一位在人工智能领域具有深厚造诣的专家,在数据科学和人工智能架构方面拥有丰富的实践经验,目前担任FOSFOR 公司旗下5 个产品的自然语言处理、机器学习及人工智能计划的主管。FOSFOR 公司作为业界领先的人工智能和机器学习创新公司,始终站在技术前沿。Pradeepta Mishra 的专长在于设计卓越的人工智能系统,尤其在理解和处理自然语言以及基于自然语言处理的推荐系统方面展现出超凡的专业能力。他作为发明人共申请了12 项专利,并在学术领域取得了丰硕的成果。他先后撰写了5 本著作,内容涵盖数据挖掘、空间数据、文本数据、网络数据和社交媒体数据等多个领域。这些书籍均由知名出版社出版发行,分别为《R 数据挖掘蓝图》(Packt 出版社,2016 年)、《R:挖掘空间、文本、网络和社交媒体数据》(Packt 出版社,2017 年)、《PyTorch 秘籍》(Apress,2019 年) 和《Python 实用说明性人工智能》(Apress,2022 年)。基于这些学术成果,他还在在线教育平台Udemy 上开设了两门相关课程,为广大学员提供了宝贵的学习资源。在2018 年全球数据科学大会上,Pradeepta 发表了关于双向LSTM 在时间序列预测中的主题演讲,为参会者提供了深入的技术见解。此外,他在TED 演讲中探讨了人工智能对行业转型和变革工作角色的影响,引发了广泛的思考和讨论。Pradeepta 不仅在专业领域有所建树,还热衷于分享他的知识和经验。曾在各类聚会、技术机构、大学和社区论坛上进行了150 余场技术演讲,为听众提供了宝贵的洞见。如需了解更多关于Pradeepta 的信息,请访问他的 LinkedIn 页面(www.linkedin.com/in/pradeepta/) 或关注他的Twitter 账号@pradmishra1。关于技术审查员Chris Thomas 是一位在人工智能和机器学习领域拥有丰富研究和开发经验的英国顾问。他还是英国分析师和程序员协会的专业会员,拥有超过20 年的技术专业生涯经验。在此期间,他曾在公共部门、半导体行业、金融、公用事业和营销领域担任要职,积累了丰富的实践经验。

目录
译者序

关于作者

关于技术审查员

致谢

前言

第1章 PyTorch 入门,张量与张量运算 1

什么是PyTorch 5

PyTorch 安装 5

秘籍1-1 张量的使用 7

小结 36

第2章 使用PyTorch 中的概率分布 37

秘籍2-1 采样张量 38

秘籍2-2 可变张量 43

秘籍2-3 统计学基础 45

秘籍2-4 梯度计算 51

秘籍2-5 张量运算之一 54

秘籍 2-6 张量运算之二 55

……

内容摘要
  
本书提供使用PyTorch 开发深度学习应用程序的基本原理和方法,旨在为读者介绍机器学习工程师和数据科学家在解决深度学习问题中所采用的主流现代算法与技术,紧跟深度学习领域的最新发展趋势,助力初学者熟练掌握PyTorch。本书的核心优势在于,采用易于理解的问题与解决方案的结构,全面而详尽地讲解了PyTorch的使用方法,并提供了大量相应的代码示例,以便将这些概念顺利应用于实际项目中。

本书适合对计算机视觉、自然语言处理等领域感兴趣的人士阅读。对于希望在深度学习任务中运用PyTorch 的读者,本书将是一本实用的指南。

主编推荐
本书的核心优势在于,采用易于理解的问题与解决方案的结构,全面而详尽地讲解了PyTorch的使用方法,并提供了大量相应的代码示例,以便将这些概念顺利应用于实际项目中。

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP