交换代数与同调代数
全新正版 极速发货
¥
47.58
6.1折
¥
78
全新
仅1件
作者李克正 著
出版社科学出版社
ISBN9787030519405
出版时间2017-03
装帧平装
开本16开
定价78元
货号1201474066
上书时间2024-12-04
商品详情
- 品相描述:全新
- 商品描述
-
目录
《现代数学基础丛书》序
第二版前言
第一版前言
Ⅰ环与模
1.环与代数
2.理想
3.模
习题I
Ⅱ整性
1.整元与整扩张
2.整闭性
3.理想与整扩张
4.赋值与赋值环
习题Ⅱ
Ⅲ诺特环和阿廷环
1.诺特环
2.阿廷环
习题Ⅲ
Ⅳ诺特环与整性
1.零点定理
2.整闭包的有限性
3.戴德金环
习题Ⅳ
Ⅴ准素分解
1.伴随素理想
2.模的准素分解
习题Ⅴ
Ⅵ张量积
1.张量积的定义与基本性质
2.张量代数
习题Ⅵ
Ⅶ平坦性
1.平坦模与平坦同态
2.忠实平坦性
习题Ⅶ
Ⅷ代数集
1.代数子集与察里斯基拓扑
2.纤维积
3.可建造集
习题Ⅷ
Ⅸ分次环与形式完备化
1.分次环与分次模
2.希尔伯特多项式
3.形式完备化
习题Ⅸ
Ⅹ维数理论
1.克鲁尔维数
2.半局部环的维数
3.同态与维数
4.有限生成代数的维数
习题Ⅸ
Ⅺ范畴
1.范畴、函子、自然变换
2.预层
习题Ⅺ
Ⅻ阿贝尔范畴
1.阿贝尔范畴的定义与基本性质
2.阿贝尔范畴的一些附加公理
3.阿贝尔张量范畴
习题Ⅻ
ⅩⅢ同调
1.复形的同调
2.导出函子
3.扩张
4.谱序列
5.张量函子的同调
习题ⅩⅢ
ⅩⅣ深度
1.平坦性的局部判据
2.正则列与深度
3.科恩一麦考莱环
习题ⅩⅣ
ⅩⅤ正规环与正则环
1.正规环
2.正则环
习题ⅩⅤ
ⅤⅪ微分与光滑性
1.微分
2.光滑同态
3.光滑点集与平坦点集
习题ⅤⅪ
附录A带算子的群
附录B同调代数的起源和发展
0.引言
1.同调的起源
2.奇异同调和同伦
3.覆盖和预层
4.上同调及其推广
5.同调代数的产生
6.同调代数向各数学领域的渗透
7.Grothendieck建立的一般同调理论
附录C习题解答或提示
参考文献
词汇索引
符号、缩略语索引
《现代数学基础丛书》已出版书目
内容摘要
交换代数与同调代数是代数学中的重要领域,也是代数几何、代数数论等领域的强大工具,因此是很多不同方向的研究生和研究人员所需要甚至推荐的。本书针对各方面读者的基本需要,内容包括多重线性代数、交换代数(包括"硬交换代数")与同调代数等方面的基本理论,在取材上只注意这些学科中很重要且实用的基本内容,而不涉及很专门的课题。在教材的安排上,采取了``低起点,高坡度''的方式。在预备知识方面,只假定读者学过群论和域论(包括伽罗华理论),而从环的基本理论讲起。每一章后面都有若干习题,标有星号的习题在附录B中有解答或提示。本书适合作为教科书或参考书,但不是作为交换代数等方面的专业研究教科书而写的。
— 没有更多了 —
以下为对购买帮助不大的评价