Preface Descartes’ Discovery 1 Chapter 1 1.1 Local and Global Coordinates: 2D 2 1.2 Going from Global to Local 6 1.3 Local and Global Coordinates: 3D 8 1.4 Stepping Outside the Box 9 1.5 Creating Coordinates 10 1.6 Exercises 12
Here and There: Points and Vectors in 2D 13 Chapter 2 2.1 Points and Vectors 14 2.2 What’s the Difference 16 2.3 Vector Fields 17 2.4 Length of a Vector 18 2.5 Combining Points 21 2.6 Independence 24 2.7 Dot Product 24 2.8 Orthogonal Projections 28 2.9 Inequalities 29 2.10 Exercises 30
Lining Up: 2D Lines 33 Chapter 3 3.1 Defining a Line 34 3.2 Parametric Equation of a Line 35 3.3 Implicit Equation of a Line 37 3.4 Explicit Equation of a Line 40 3.5 Converting Between Parametric and Implicit Equations 41 3.6 Distance of a Point to a Line 43 3.7 The Foot of a Point 47 3.8 A Meeting Place: Computing Intersections 48 3.9 Exercises 54
Changing Shapes: Linear Maps in 2D 57 Chapter 4 4.1 Skew Target Boxes 58 4.2 The Matrix Form 59 4.3 More about Matrices 61 4.4 Scalings 63 4.5 Reflections 65 4.6 Rotations 68 4.7 Shears 69 4.8 Projections 71 4.9 The Kernel of a Projection 73 4.10 Areas and Linear Maps: Determinants 74 4.11 Composing Linear Maps 77 4.12 More on Matrix Multiplication 81 4.13 Working with Matrices 83 4.14 Exercises 84
2×2 Linear Systems 87 Chapter 5 5.1 Skew Target Boxes Revisited 88 5.2 The Matrix Form 89 5.3 A Direct Approach: Cramer’s Rule 90 5.4 Gauss Elimination 91 5.5 Undoing Maps: Inverse Matrices 93 5.6 Unsolvable Systems 99 5.7 Underdetermined Systems 100 5.8 Homogeneous Systems 100 5.9 Numerical Strategies: Pivoting 102 5.10 Defining a Map 103 5.11 Exercises 104
Moving Things Around: Affine Maps in 2D 107 Chapter 6 6.1 Coordinate Transformations 108 6.2 Affine and Linear Maps 110 6.3 Translations 111 6.4 More General Affine Maps 112 6.5 Mapping Triangles to Triangles 114 6.6 Composing Affine Maps 116 6.7 Exercises 120
Eigen Things 123 Chapter 7 7.1 Fixed Directions 124 7.2 Eigenvalues 125 7.3 Eigenvectors 127 7.4 Special Cases 129 7.5 The Geometry of Symmetric Matrices 132 7.6 Repeating Maps 135 7.7 The Condition of a Map 137 7.8 Exercises 138
Breaking It Up: Triangles 141 Chapter 8 8.1 Barycentric Coordinates 142 8.2 Affine Invariance 144 8.3 Some Special Points 145 8.4 2D Triangulations 148 8.5 A Data Structure 149 8.6 Point Location 150 8.7 3D Triangulations 151 8.8 Exercises 153
Conics 155 Chapter 9 9.1 The General Conic 156 9.2 Analyzing Conics 160 9.3 The Position of a Conic 162 9.4 Exercises 163
3D Geometry 165 Chapter 10 10.1 From 2D to 3D 166 10.2 Cross Product 168 10.3 Lines 172 10.4 Planes 173 10.5 Application: Lighting and Shading 177 10.6 Scalar Triple Product 180 10.7 Linear Spaces 181 10.8 Exercises 183
Interactions in 3D 185 Chapter 11 11.1 Distance Between a Point and a Plane 186 11.2 Distance Between Two Lines 187 11.3 Lines and Planes: Intersections 189 11.4 Intersecting a Triangle and a Line 191 11.5 Lines and Planes: Reflections 191 11.6 Intersecting Three Planes 193 11.7 Intersecting Two Planes 194 11.8 Creating Orthonormal Coordinate Systems 195 11.9 Exercises 197
Linear Maps in 3D 199 Chapter 12 12.1 Matrices and Linear Maps 200 12.2 Scalings 202 12.3 Reflections 204 12.4 Shears 204 12.5 Projections 207 12.6 Rotations 209 12.7 Volumes and Linear Maps: Determinants 213 12.8 Combining Linear Maps 216 12.9 More on Matrices 218 12.10 Inverse Matrices 219 12.11 Exercises 221
General Linear Systems 241 Chapter 14 14.1 The Problem 242 14.2 The Solution via Gauss Elimination 244 14.3 Determinants 250 14.4 Overdetermined Systems 253 14.5 Inverse Matrices 256 14.6 LU Decomposition 258 14.7 Exercises 262
General Linear Spaces 265 Chapter 15 15.1 Basic Properties 266 15.2 Linear Maps 268 15.3 Inner Products 271 15.4 Gram-Schmidt Orthonormalization 271 15.5 Higher Dimensional Eigen Things 272 15.6 A Gallery of Spaces 274 15.7 Exercises 276
Numerical Methods 279 Chapter 16 16.1 Another Linear System Solver: The Householder Method 280 16.2 Vector Norms and Sequences 285 16.3 Iterative System Solvers: Gauss-Jacobi and Gauss-Seidel 287 16.4 Finding Eigenvalues: the Power Method 290 16.5 Exercises 294
Putting Lines Together: Polylines and Polygons 297 Chapter 17 17.1 Polylines 298 17.2 Polygons 299 17.3 Convexity 300 17.4 Types of Polygons 301 17.5 Unusual Polygons 302 17.6 Turning Angles and Winding Numbers 304 17.7 Area 305 17.8 Planarity Test 309 17.9 Inside or Outside 310 17.10 Exercises 313
Curves 315 Chapter 18 18.1 Application: Parametric Curves 316 18.2 Properties of Bézier Curves 321 18.3 The Matrix Form 323 18.4 Derivatives 324 18.5 Composite Curves 326 18.6 The Geometry of Planar Curves 327 18.7 Moving along a Curve 329 18.8 Exercises 331 PostScript Tutorial 333 Appendix A A.1 A Warm-Up Example 333 A.2 Overview 336 A.3 Affine Maps 338 A.4 Variables 339 A.5 Loops 340 A.6 CTM 341 Selected Problem Solutions 343 Appendix B Glossary 367 Bibliography 371 Index 373
以下为对购买帮助不大的评价