• 时间序列与预测(英文版)(第2版)
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

时间序列与预测(英文版)(第2版)

50 7.2折 69 九五品

仅1件

重庆南岸
认证卖家担保交易快速发货售后保障

作者Peter、Richard A.Davis 著

出版社人民邮电出版社

出版时间2009-03

版次1

装帧平装

上书时间2023-08-15

透雾拈花的书摊

已实名 进店 收藏店铺

   商品详情   

品相描述:九五品
图书标准信息
  • 作者 Peter、Richard A.Davis 著
  • 出版社 人民邮电出版社
  • 出版时间 2009-03
  • 版次 1
  • ISBN 9787115196828
  • 定价 69.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 其他
  • 页数 437页
  • 正文语种 英语
  • 丛书 图灵数学统计学丛书
【内容简介】
  《时间序列与预测(英文版)(第2版)》是时间序列领域的名著。特色在于注重实际应用。深浅适中,适用面广,示例和习题丰富,有微积分、线性代数和统计学基础知识即可阅读。书中全面介绍了经济、工程、自然科学和社会科学中所用的时间序列和预测方法,核心内容是平稳过程、ARMA模型和ARIMA模型、多元时间序列和状态空间模型、谱分析。书中配有时间序列软件包ITSM2000学生版,更加方便读者学习。
【作者简介】
  PeterJ.Brockwell世界著名统计学家。ASA(美国统计协会)、IMS(数理统计学会)会士。科罗拉多州立大学统计系荣休教授。他是JournalofTimeSeriesAnalysis副主编,并LiRichardA.Davis合作开发了时间序列软件包ITSM2000。
  RichardA.Davis世界著名统计学家。ASA(美国统计协会)、IMS(数理统计学会)会士。科罗拉多州立大学统计系教授,1997年至2005年担任该系的系主任。1998年荣获计量经济学Koopmans奖。他是StochasticProcessesandTheirApplications,AnnalsofAppliedProbability等期刊编委,是ProceedingsoftheAmericanMathematicsSociety的统计学领域主编。
【目录】
1.Introduction
1.1.ExamplesofTimeSeries
1.2.ObjectivesofTimeSeriesAnalysis
1.3.SomeSimpleTimeSeriesModels
1.3.1.SomeZero-MeanModels
1.3.2.ModelswithTrendandSeasonality
1.3.3.AGeneralApproachtoTimeSeriesModeling
1.4.StationaryModelsandtheAutocorrelationFunction
1.4.1.TheSampleAutocorrelationFunction
1.4.2.AModelfortheLakeHuronData
1.5.EstimationandEliminationofTrendandSeasonalComponents
1.5.1.EstimationandEliminationofTrendintheAbsenceof
Seasonality
1.5.2.EstimationandEliminationofBothTrendand
Seasonality
1.6.TestingtheEstimatedNoiseSequence
Problems

2.StationaryProcesses
2.1.BasicProperties
2.2.LinearProcesses
2.3.IntroductiontoARMAProcesses
2.4.PropertiesoftheSampleMeanandAutocorrelationFunction
2.4.1.Estimationoftz
2.4.2.Estimationofy(.)andp(.)
2.5.ForecastingStationaryTimeSeries
2.5.1.TheDurbin-LevinsonAlgorithm
2.5.2.TheInnovationsAlgorithm
2.5.3.PredictionofaStationaryProcessinTermsofInfinitely
ManyPastValues
2.6.TheWoldDecomposition
Problems

3.ARMAModels
3.1.ARMA(p,q)Processes
3.2.TheACFandPACFofanARMA(p,q)Process
3.2.1.CalculationoftheACVF
3.2.2.TheAutocorrelationFunction
3.2.3.ThePartialAutocorrelationFunction
3.2.4.Examples
3.3.ForecastingARMAProcesses
Problems

4.SpectralAnalysis
4.1.SpectralDensities
4.2.ThePeriodogram
4.3.Time-InvariantLinearFilters
4.4.TheSpectralDensityofanARMAProcess
Problems

5.ModelingandForecastingwithARMAProcesses
5.I.PreliminaryEstimation
5.1.1.Yule-WalkerEstimation
5.1.2.BurgsAlgorithm
5.1.3.TheInnovationsAlgorithm
5.1.4.TheHannan-RissanenAlgorithm
5.2.MaximumLikelihoodEstimation
5.3.DiagnosticChecking
5.3.1.TheGraphof
5.3.2.TheSampleACFoftheResiduals
5.3.3.TestsforRandomnessoftheResiduals
5.4.Forecasting
5.5.OrderSelection
5.5.1.TheFPECriterion
5.5.2.TheAICCCriterion
Problems

6.NonstationaryandSeasonalTimeSeriesModels
6.1.ARIMAModelsforNonstationaryTimeSeries
6.2.IdentificationTechniques
6.3.UnitRootsinTimeSeriesModels
6.3.1.UnitRootsinAutoregressions
6.3.2.UnitRootsinMovingAverages
6.4.ForecastingARIMAModels
6.4.1.TheForecastFunction
6.5.SeasonalARIMAModels
6.5.1.ForecastingSARIMAProcesses
6.6.RegressionwithARMAErrors
6.6.1.OLSandGLSEstimation
6.6.2.MLEstimation
Problems

7.MultivariateTimeSeries
7.1.Examples
7.2.Second-OrderPropertiesofMultivariateTimeSeries
7.3.EstimationoftheMeanandCovarianceFunction
7.3.1.Estimationof
7.3.2.EstimationofF(h)
7.3.3.TestingforIndependenceofTwoStationaryTimeSeries
7.3.4.BartlettsFormula
7.4.MultivariateARMAProcesses
7.4.1.TheCovarianceMatrixFunctionofaCausalARMA
Process
7.5.BestLinearPredictorsofSecond-OrderRandomVectors
7.6.ModelingandForecastingwithMultivariateARProcesses
7.6.1.EstimationforAutoregressiveProcessesUsingWhittles
Algorithm
7.6.2.ForecastingMultivariateAutoregressiveProcesses
7.7.Cointegration
Problems

8.State-SpaceModels
8.1.State-SpaceRepresentations
8.2.TheBasicStructuralModel
8.3.State-SpaceRepresentationofARIMAModels
8.4.TheKalmanRecursions
8.5.EstimationForState-SpaceModels
8.6.State-SpaceModelswithMissingObservations
8.7.TheEMAlgorithm
8.8.GeneralizedState-SpaceModels
8.8.1.Parameter-DrivenModels
8.8.2.Observation-DrivenModels
Problems

9.ForecastingTechniques
9.1.TheARARAlgorithm
9.1.1.MemoryShortening
9.1.2.FittingaSubsetAutoregression
9.1.3.Forecasting
9.1.4.ApplicationoftheARARAlgorithm
9.2.TheHolt-WintersAlgorithm
9.2.1.TheAlgorithm
9.2.2.Holt-WintersandARIMAForecasting
9.3.TheHolt-WintersSeasonalAlgorithm
9.3.1.TheAlgorithm
9.3.2.Holt-WintersSeasonalandARIMAForecasting
9.4.ChoosingaForecastingAlgorithm
Problems

10.FurtherTopics
10.1.TransferFunctionModels
10.1.1.PredictionBasedonaTransferFunctionModel
10.2.InterventionAnalysis
10.3.NonlinearModels
10.3.1.DeviationsfromLinearity
10.3.2.ChaoticDeterministicSequences
10.3.3.DistinguishingBetweenWhiteNoiseandiidSequences
10.3.4.ThreeUsefulClassesofNonlinearModels
10.3.5.ModelingVolatility
10.4.Continuous-TimeModels
10.5.Long-MemoryModels
Problems

A.RandomVariablesandProbabilityDistributions
A.1.DistributionFunctionsandExpectation
A.2.RandomVectors
A.3.TheMultivariateNormalDistribution
Problems
BStatisticalComplements
CMeanSquareConvergence
DAnITSMTutorial
References
Index
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP