目录 1 Introduction 1.1 From the Hall Effect to Quantum Spin Hall Effect 1.2 Topological Insulators as Generalization of Quantum Spin Hall Effect 1.3 Topological Phases in Superconductors and Superfluids 1.4 Dirac Equation and Topological Insulators 1.5 Summary: The Confirmed Family Members 1.6 Further Reading References 2 Starting from the Dirac Equation 2.1 Dirac Equation 2.2 Solutions of Bound States 2.2.1 Jackiw-Rebbi Solution in One Dimension 2.2.2 Two Dimensions 2.2.3 Three and Higher Dimensions 2.3 Why Not the Dirac Equation 2.4 Quadratic Correction to the Dirac Equation 2.5 Bound State Solutions of the Modified Dirac Equation. 2.5.1 One Dimension: End States 2.5.2 Two Dimensions: Helical Edge States 2.5.3 Three Dimensions: Surface States 2.5.4 Generalization to Higher-Dimensional Topological Insulators 2.6 Summary 2.7 Further Reading References 3 Minimal Lattice Model for Topological Insulator 3.1 Tight Binding Approximation 3.2 From Continuous to Lattice Model 3.3 One-Dimensional Lattice Model 3.4 Two-Dimensional Lattice Model 3.4.1 Integer Quantum Hall Effect 3.4.2 Quantum Spin Hall Effect 3.5 Three-Dimensional Lattice Model 3.6 Parity at the Time Reversal Invariant Momenta 3.6.1 One-Dimensional Lattice Model 3.6.2 Two-Dimensional Lattice Model 3.6.3 Three-Dimensional Lattice Model 3.7 Summary References 4 Topological Invariants 4.1 Bloch Theorem and Band Theory 4.2 Berry Phase 4.3 Quantum Hall Conductance and Chern Number 4.4 Electric Polarization in a Cyclic Adiabatic Evolution.. 4.5 Thouless Charge Pump 4.6 Fu-Kane Spin Pump 4.7 Integer Quantum Hall Effect: Laughlin Argument 4.8 Time Reversal Symmetry and the Z2 Index 4.9 Generalization to Two and Three Dimensions 4.10 Phase Diagram of Modified Dirac Equation 4.11 Further Reading References 5 Topological Phases in One Dimension 5.1 Su-Schrieffer-Heeger Model for Polyacetylene 5.2 Ferromagnet with Spin-Orbit Coupling 5.3 p-Wave Pairing Superconductor 5.4 Ising Model in a Transverse Field 5.5 One-Dimensional Maxwell's Equations in Media 5.6 Summary References 6 Quantum Spin Hall Effect 6.1 Two-Dimensional Dirac Model and the Chern Number 6.2 From Haldane Model to Kane-Mele Model 6.2.1 Haldane Model 6.2.2 Kane-Mele Model 6.3 Transport of Edge States 6.3.1 Landauer-Biittiker Formalism 6.3.2 Transport of Edge States 6.4 Stability of Edge States 6.5 Realization of Quantum Spin Hall Effect in HgTe/CdTe Quantum Well 6.5.1 Band Structure of HgTe/CdTe Quantum Well.. 6.5.2 Exact Solution of Edge States 6.5.3 Experimental Measurement 6.6 Quantum Hall Effect and Quantum Spin Hall Effect:A Case Study 6.7 Coherent Oscillation Due to the Edge States 6.8 Further Reading References 7 Three-Dimensional Topological Insulators 7.1 Family Members of Three-Dimensional Topological Insulators... 7.1.1 Weak Topological Insulators: PbxSnl-xTe 7.1.2 Strong Topological Insulators: Bil-xSbx 7.1.3 Topological Insulators with a Single Dirac Cone: Bi2Se3 and Bi2Te3 7.1.4 Strained HgTe 7.2 Electronic Model for Bi2Se3 7.3 Effective Model for Surface States 7.4 Physical Properties of Topological Insulators 7.4.1 Absence of Backscattering 7.4.2 Weak Antilocalization 7.4.3 Shubnikov-de Haas Oscillation 7.5 Surface Quantum Hall Effect 7.6 Surface States in a Strong Magnetic Field 7.7 Topological Insulator Thin Film 7.7.1 Effective Model for Thin Film 7.7.2 Structural Inversion Asymmetry 7.7.3 Experimental Data of ARPES 7.8 HgTe Thin Film 7.9 Further Reading References 8 Impurities and Defects in Topological Insulators 8.1 One Dimension 8.2 Integral Equation for Bound State Energies 8.2.1 δ-potential 8.3 Bound States in Two Dimensions 8.4 Topological Defects 8.4.1 Magnetic Flux and Zero-Energy Mode 8.4.2 Wormhole Effect 8.4.3 Witten Effect 8.5 Disorder Effect to Transport 8.6 Further Reading References 9 Topological Superconductors and Superfluids 9.1 Complex (p + ip)-Wave Superconductor of Spinless or Spin-Polarized Fermions 9.2 Spin-Triplet Pairing Superfluidity: 3He-A and 3He-B Phases 9.2.1 3He: Normal Liquid Phase 9.2.2 3He-B Phase 9.2.3 3He-A Phase: Equal Spin Pairing 9.3 Spin-Triplet Superconductor: Sr2RuO4 9.4 Superconductivity in Doped Topological Insulators 9.5 Further Reading References 10 Majorana Fermions in Topological Insulators 10.1 What Is the Majorana Fermion? 10.2 Majorana Fermions in p-Wave Superconductors 10.2.1 Zero-Energy Mode Around a Quantum Vortex 10.2.2 Majorana Fermions in Kitaev's Toy Model 10.2.3 Quasi-One-Dimensional Superconductor 10.3 Majorana Fermions in Topological Insulators 10.4 Detection of Majorana Fermions 10.5 Sau-Lutchyn-Tewari-Das Sarma Model for Topological Superconductor 10.6 Non-Abelian Statistics and Topological Quantum Computing 10.7 Further Reading References 11 Topological Anderson Insulator 11.1 Band Structure and Edge States 11.2 Quantized Anomalous Hall Effect 11.3 Topological Anderson Insulator 11.4 Effective Medium Theory for Topological Anderson Insulator 11.5 Band Gap or Mobility Gap 11.6 Summary 11.7 Further Reading References 12 Summary: Symmetry and Topological Classification 12.1 Ten Symmetry Classes for Noninteracting Fermion Systems 12.2 Physical Systems and the Symmetry Classes 12.2.1 Standard (Wigner-Dyson) Classes 12.2.2 Chiral Classes 12.2.3 Bogoliubov-de Gennes (BdG) Classes 12.3 Characterization in the Bulk 12.4 Five Types in Each Dimension 12.5 Conclusion 12.6 Further Reading References A Derivation of Two Formulae A.1 Quantization of the Hall Conductance A.2 A Simple Formula for the Hall Conductance B Time Reversal Symmetry B.1 Classical Cases B.2 Time Reversal Operator Θ B.3 Time Reversal for a Spin-1/2 System Index
以下为对购买帮助不大的评价