• 【假一罚四】Python Web深度学习
  • 【假一罚四】Python Web深度学习
21年品牌 40万+商家 超1.5亿件商品

【假一罚四】Python Web深度学习

集团直发,全新正版书籍,假一罚四,放心选购。24小时内发货,可开发票。

71.4 6.0折 119 全新

库存56件

广东东莞
认证卖家担保交易快速发货售后保障

作者(印) 安努巴哈夫·辛格等著

出版社清华大学出版社

ISBN9787302609292

出版时间2022-07

装帧平装

开本其他

定价119元

货号4154175

上书时间2024-11-26

朗朗图书书店

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
前言

深度学习技术可用于开发智能Web应用程序。过去几年,在产品和业务中采用深度学习技术的公司数量大幅增长,为了市场机会而提供基于人工智能和深度学习的解决方案的初创企业数量也显著增加。本书介绍了许多使用Python在Web开发中实现深度学习的工具和技术实践。
本书首先阐释了机器学习的基础知识,重点是深度学习和神经网络的基础知识,以及它们的常见变体(如卷积神经网络和循环神经网络),并介绍了如何将它们集成到Web中。我们演示了为自定义模型创建REST API,使用Python库(如Django和Flask)创建支持深度学习的Web应用程序。你将看到如何在Google云平台、AWS和Microsoft Azure上为基于深度学习的Web部署设置云环境,并了解如何使用深度学习API。此外,你还将学习使用Microsoft的Cognitive Toolkit(CNTK),它是一个类似于Keras的深度学习框架。你还将掌握如何部署真实世界的网站,并使用reCAPTCHA和Cloudflare保护网站安全。最后,本书还演示了如何通过Dialogflow在网页上集成语音用户界面。
在通读完本书之后,相信你能够在最佳工具和实践的帮助下部署你的智能Web应用程序和网站。
本书读者
本书适用于希望在Web上执行深度学习技术和方法的数据科学家、机器学习从业者和深度学习工程师。对于希望在浏览器中使用智能技术使其更具交互性的Web开发人员来说,本书也是理想之选。在学习完本书之后,你将深入了解浏览器数据。
内容介绍
本书共分为4篇12章,具体内容如下。
第1篇:“Web和人工智能”,包括第1章。
第1章:“人工智能简介和机器学习基础”,简要介绍机器学习、深度学习以及与Web开发相关的其他形式的人工智能方法论。另外,本章还快速介绍机器学习管道的基本主题,如探索性数据分析(EDA)、数据预处理、特征工程、训练和测试、评估模型等。最后还比较AI流行之前网站提供的交互性、用户体验以及它们现在的情况,探讨知名Web-AI企业正在做的工作,以及人工智能给它们的产品带来的巨大变化。
第2篇:“使用深度学习进行Web开发”,包括第2~4章。
第2章:“使用Python进行深度学习”,详细阐释与深度学习相关的基本概念和术语,以及如何使用深度学习技术构建一个简单的Web应用程序,其中还介绍Python中的不同深度学习库。
第3章:“创建第一个深度学习Web应用程序”,讨论利用深度学习的Web应用程序架构的若干个重要概念,并介绍探索数据集的方法。本章还展示如何实现和改进一个简单的神经网络,以及如何将其封装到API中以开发一个简单的Web应用程序。最后还演示如何使用不同的标准Web技术堆栈来实现API。
第4章:“TensorFlow.js入门”,介绍最流行的深度学习JavaScript库—TensorFlow.js(Tf.js)。本章简要概述TensorFlow.js的基本概念、它出现的意义以及它能够在浏览器中执行的操作。此外,本章还展示如何通过TensorFlow.js使用预训练模型并构建一个简单的Web应用程序。
第3篇:“使用不同的深度学习API进行Web开发”,包括第5~8章。
第5章:“通过API进行深度学习”,详细阐释API的概念及其在软件开发中的重要性。此外,本章还介绍不同的深度学习API示例(主要涵盖自然语言处理和计算机视觉两大领域)。最后,本章探讨在选择深度学习API提供商时应考虑的事项。
第6章:“使用Python在Google云平台上进行深度学习”,介绍Google云平台为Web开发人员所提供的AI集成产品。重点是Dialogflow,它可用于制作聊天机器人和对话式AI;另外还有Cloud Vision API,可用于构建良好的视觉识别系统;还有Cloud Translate API,可为不同地区的用户提供其语言的网站内容。本章详细讨论它们的应用,并演示在Python中使用它们的基本方法。
第7章:“使用Python在AWS上进行深度学习”,介绍Amazon Web Services(AWS)并简要讨论它的各种产品,包括Alexa API和Rekognition API。Alexa API可用于构建家庭自动化Web应用程序和其他交互界面,而Rekognition API则可用于检测照片和视频中的人和物体。
第8章:“使用Python在Microsoft Azure上进行深度学习”,介绍Microsoft Azure云服务,重点介绍Cognitive Toolkit(CNTK)、Face API和Text Analytics API等。Face API可以识别图片中的人像特征,而Text Analytics API则可用于从给定的文本片段中提取有意义的信息。
第4篇:“生产环境中的深度学习—智能Web应用程序开发”,包括第9~12章。
第9章:“支持深度学习的网站的通用生产框架”,介绍为在生产环境中的Web站点有效部署深度学习而设置的通用框架。涵盖定义问题陈述、根据问题陈述收集数据、数据清洗和预处理、构建AI模型、创建界面、在界面上使用AI模型等步骤,并创建一个端到端AI集成Web应用程序示例。
第10章:“使用深度学习系统保护Web应用程序”,讨论使用Python 进行深度学习以保护网站安全的若干技巧。本章介绍reCAPTCHA和Cloudflare,并讨论如何使用它们来增强网站的安全性。最后还展示如何在Python后端使用深度学习来实现安全机制以检测网站上的恶意用户。
第11章:“自定义Web深度学习生产环境”,讨论在生产环境中更新模型的方法以及如何根据需求选择正确的方法。本章介绍一些用于创建深度学习数据流的著名工具,最后还构建一个在后端使用在线学习的示例生产应用 程序。
第12章:“使用深度学习API和客服聊天机器人创建端到端Web应用程序”,介绍自然语言处理及其常用术语,讨论如何创建聊天机器人以使用Dialogflow解决一般客服查询并将其集成到Django和Flask网站中。本章探索实现客服机器人个性的方法以及如何使此类系统资源有效。此外,本章还介绍一种使用Web Speech API在网页上进行语音识别和语音合成的方法。
附录 A:“Web 深度学习的成功案例和新兴领域”,介绍一些著名网站的成功案例,它们的产品在很大程度上依赖于利用深度学习的力量。该附录还讨论Web开发中可以通过深度学习进行增强的一些关键研究领域。这将帮助你更深入地研究Web技术和深度学习的结合,并激励你开发出自己的智能Web应用程序。
充分利用本书
假设你了解Python语言,特别是Python 3.6及更高版本。强烈建议在本地系统上安装Python的Anaconda发行版。支持Python 3.6及更高版本的Anaconda发行版都适合运行本书中的示例。



 
 
 
 

商品简介

 《Python Web深度学习》详细阐述了与Python Web相关的基本解决方案,主要包括人工智能简介和机器学习基础、使用Python进行深度学习、创建第一个深度学习Web应用程序、TensorFlow.js入门、通过API进行深度学习、使用Python在Google云平台上进行深度学习、使用Python在AWS上进行深度学习、使用Python在Microsoft Azure上进行深度学习、支持深度学习的网站的通用生产框架、使用深度学习系统保护Web应用程序、自定义Web深度学习生产环境、使用深度学习API和客服聊天机器人创建端到端Web应用程序等内容。此外,本书还提供了相应的示例、代码,以帮助读者进一步理解相关方案的实现过程。



目录
本书详细阐述了与Python Web相关的基本解决方案, 主要包括使用Python进行深度学习、TensorFlow. js入门、通过API进行深度学习、使用Python在Google云平台上进行深度学习、使用Python在AWS上进行深度学习、使用Python在Microsoft Azure上进行深度学习、使用深度学习系统保护Web应用程序、自定义Web深度学习生产环境、客服聊天机器人等内容。此外, 本书还提供了相应的示例、代码, 以帮助读者进一步理解相关方案的实现过程。

主编推荐

《Python Web深度学习》首先阐释了机器学习的基础知识,重点是深度学习和神经网络的相关知识,以及它们的常见变体,并介绍了如何将它们集成到Web中。


【内容简介】

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP