¥ 15 2.2折 ¥ 69 九五品
仅1件
作者[美]David C. Lay(戴维 C. 莱) 著
出版社电子工业出版社
出版时间2016-04
版次3
装帧平装
货号北京3一15
上书时间2024-11-25
线性代数是处理矩阵和向量空间的数学分支科学,在现代数学的各个领域都有应用。本书主要包括线性方程组、矩阵代数、行列式、向量空间、特征值和特征向量、正交性和*小二乘方、对称矩阵和二次型等内容。本书的目的是使学生掌握线性代数*基本的概念、理论和证明。首先以常见的方式,具体介绍了线性独立、子空间、向量空间和线性变换等概念,然后逐渐展开,*后在抽象地讨论概念时,它们就变得容易理解多了。
David C. Lay:美国奥罗拉大学学士,加州大学洛杉矶分校硕士、博士,教育家。1976年起开始在马里兰大学从事数学教学与研究工作,阿姆斯特丹大学、自由大学、德国凯撒斯劳滕工业大学访问学者,在函数分析和线性代数领域发表文章30余篇。美国国家科学基金会资助的线性代数课程研究小组的创始人,参与编写了《函数分析、积分及其应用导论》和《线性代数精粹》等书。
CHAPTER 1 Linear Equations in Linear Algebra 1
Introductory Example: Linear Models in Economics and Engineering 1
1.1Systems of Linear Equations 2
1.2Row Reduction and Echelon Forms 14
1.3Vector Equations 28
1.4The Matrix Equation Ax = b 40
1.5Solution Sets of Linear Systems 50
1.6Applications of Linear Systems 57
1.7Linear Independence 65
1.8Introduction to Linear Transformations 73
1.9The Matrix of a Linear Transformations 82
1.10Linear Models in Business, Science, and Engineering 92
Supplementary Exercises 102
CHAPTER 2 Matrix Algebra 105
Introductory Example: Computer Models in Aircraft Design 105
2.1Matrix Operations 107
2.2The Inverse of a Matrix 118
2.3Characterizations of Invertible Matrices 128
2.4Partioned Matrices 134
2.5Matrix Factorizations 142
2.6The Leontief Input-Output Modes 152
2.7Applications to Computer Graphics 158
2.8Subspaces of Rn 167
2.9Dimension and Rank 176
Supplementary Exercises 183
CHAPTER 3 Determinants 185
Introductory Example: Determinants in Analytic Geometry 185
3.1Introduction to Determinants 186
3.2Properties of Determinants 192
3.3Cramer’s Rule, Volume, and Linear Transformations 201
Supplementary Exercises 211
CHAPTER 4 Vector Spaces 215
Introductory Example: Space Flight and Control Systems 215
4.1Vector Spaces and Subspaces 216
4.2Null Space, Column Spaces, and Linear Transformations 226
4.3Linearly Independent Sets: Bases 237
4.4Coordinate Systems 246
4.5The Dimension of a Vector Space 256
4.6Rank 262
4.7Change of Basis 271
4.8Applications to Difference Equations 277
4.9Applications to Markov Chains 288
Supplementary Exercises 299
CHAPTER 5 Eigenvalues and Eigenvectors 301
Introductory Example: Dynamical Systems and Spotted Owls 301
5.1Eigenvectors and Eignevalues 302
5.2The Characteristic Equation 310
5.3Diagonalization 319
5.4Eigenvectors and Linear Transformations 327
5.5Complex Eigenvalues 335
5.6Discrete Dynamical Systems 342
5.7Applications to Differential Equations 353
5.8Iterative Estimates for Eigenvalues 363
Supplementary Exercises 370
CHAPTER 6 Orthogonality and Least Squares 373
Introductory Example: Readjusting the North American Datum 373
6.1Inner Product, Length, and Orthogonality 375
6.2Orthogonal Sets 384
6.3Orthogonal Projections 394
6.4The Gram-Schmidt Process 402
6.5Least-Squares Problems 409
6.6Applications to Linear Models 419
6.7Inner Product Spaces 427
6.8Applications of Inner Product Spaces 436
Supplementary Exercises 444
CHAPTER 7 Symmetric Matrices and Quadratic Forms 447
Introductory Example: Multichannel Image Processing 447
7.1Diagonalization of Symmetric Matices 449
7.2Quadratic Forms 455
7.3Constrained Optimization 463
7.4The Singular Value Decomposition 471
7.5Applications to Image Processing and Statistics 482
Supplementary Exercises 444
Appendixes
A Uniqueness of the Reduced Echelon Form A1
B Complex Numbers A3
Glossary A9
Answers to Odd-Numbered Exercises A19
Index I1
— 没有更多了 —
以下为对购买帮助不大的评价