• 数据挖掘与应用:以SAS和R为工具
21年品牌 40万+商家 超1.5亿件商品

数据挖掘与应用:以SAS和R为工具

658 58 九五品

仅1件

浙江杭州
认证卖家担保交易快速发货售后保障

作者张俊妮

出版社北京大学出版社有限公司

ISBN9787301299098

出版时间2017-02

版次1

装帧平装

开本16开

纸张胶版纸

页数356页

字数99999千字

定价58元

上书时间2024-12-18

靖鮟大君

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九五品
商品描述
基本信息
书名:数据挖掘与应用:以SAS和R为工具
定价:58.00元
作者:张俊妮
出版社:北京大学出版社有限公司
出版日期:2017-02-01
ISBN:9787301299098
字数:528000
页码:356
版次:2
装帧:平装
开本:16开
商品重量:
编辑推荐

内容提要

目录
"前言

 章 数据挖掘概述 01
1.1 什么是数据挖掘 02
1.2 统计思想在数据挖掘中的重要性 02
1.3 数据挖掘的应用案例 07
1.4 CRISP-DM 数据挖掘方法论 14
1.5 SEMMA 数据挖掘方法论 15

第 2 章 数据理解和数据准备 17
2.1 数据理解 19
2.2 数据准备 22
2.3 数据理解和数据准备示例: FNBA 信用卡数据 35

第 3 章 缺失数据 51
3.1 缺失数据模式和缺失数据机制 52
3.2 缺失数据机制对数据分析的影响 53
3.3 缺失值插补 62
3.4 缺失数据插补及分析示例:纽约空气质量 64

第 4 章 关联规则挖掘 73
4.1 关联规则的实际意义 74
4.2 关联规则的基本概念及 Apriori 算法 74
4.3 序列关联规则 80
4.4 关联规则挖掘示例 81
4.5 关联规则挖掘的其他讨论 85

第 5 章 多元统计中的降维方法 88
5.1 主成分分析 89
5.2 探索性因子分析 97
5.3 多维标度分析 104

第 6 章 聚类分析 111
6.1 距离与相似度的度量 113
6.2 k 均值聚类算法 117
6.3 层次聚类法 122

第 7 章 预测性建模的一些基本方法 130
7.1 判别分析 131
7.2 朴素贝叶斯分类算法 134
7.3 k 近邻法 137
7.4 线性回归 141
7.5 广义线性模型 149

第 8 章 回归模型中的规则化和变量选择 168
8.1 线性回归中的规则化和变量选择 169
8.2 广义线性模型中的规则化和变量选择 181

第 9 章 神经网络的基本方法 184
9.1 神经网络架构及基本组成 185
9.2 误差函数 190
9.3 神经网络训练算法 193
9.4 提高神经网络模型的可推广性 198
9.5 数据预处理 200
9.6 神经网络建模示例 201
9.7 自组织图 222

0 章 卷积神经网络 230
10.1 深度神经网络 231
10.2 卷积神经网络架构 232
10.3 卷积神经网络示例: Fashion-MNIST 数据 239

1 章 决策树方法 245
11.1 决策树简介 246
11.2 决策树的生长与修剪 248
11.3 对缺失数据的处理 155
11.4 变量选择 256
11.5 决策树的优缺点 257

2 章 支持向量机 274
12.1 支持向量机用于二分类问题 275
12.2 支持向量机用于多分类问题 284
12.3 支持向量机用于回归问题 285

3 章 模型评估 290
13.1 因变量为二分变量的情形 291
13.2 因变量为多分变量的情形 301
13.3 因变量为连续变量的情形 303
13.4 模型评估示例:德国信用数据的模型评估 304

4 章 模型组合与两阶段模型 312
14.1 模型组合 313
14.2 随机森林 321
14.3 两阶段模型 324

5 章 协同过滤 326
15.1 基于用户(User-based)的协同过滤 327
15.2 基于物品(Item-based)的协同过滤 328
15.3 基于 SVD 的协同过滤 328
15.4 基于 Funk SVD 的协同过滤 329
15.5 协同过滤示例:动漫片推荐 331

参考文献 337"
作者介绍
    张俊妮:美国哈佛大学统计学博士,北京大学光华管理学院商务统计及经济计量系副教授。研究领域包括:贝叶斯分析、因果推断、数据挖掘及文本挖掘。在Journal of American Statistical Association、Statistica Sinica、等期刊上发表二十余篇论文,出版英文专著。曾获北京大学教学很好奖、光华管理学院很好课程奖。
序言

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP