【全新】 信息检索导论 [美]克里斯托夫·曼宁,[美]普拉巴卡尔·拉格万,[德]欣里希·舒策 人民邮电出版社 9787115514080
本店图书 都是正版图书 可开电子发票 需要发票的联系客服!
¥
56.32
5.7折
¥
99
全新
库存8件
作者[美]克里斯托夫·曼宁,[美]普拉巴卡尔·拉格万,[德]欣里希·舒策
出版社人民邮电出版社
ISBN9787115514080
出版时间2018-05
装帧平装
开本16开
定价99元
货号9571761
上书时间2024-12-20
商品详情
- 品相描述:全新
- 商品描述
-
作者简介
王斌,博士,小米公司AI实验室NLP方向首席科学家,前中国科学院信息工程研究所研究员、博导、中国科学院大学教授。主持国家973、863、国家自然科学基金、国际合作基金、部委及企业合作等课题20余项,在包括SIGIR、CIKM、ACL、EMNLP、AAAI、IJCAI、TKDE等在内的会议和刊物上发表学术论文150余篇。担任SIGIR、ACL、CIKM、WWW、IJCAI等会议的程序委员会委员,同时是中国计算机学会高级会员、中国中文信息学会理事、中文信息学会信息检索专业委员会委员及《中文信息学报》编委。自2006年起在中国科学院研究生院讲授“现代信息检索”研究生课程,迄今培养博士、硕士研究生80余名。
李鹏,博士,中国科学院信息工程研究所高级工程师,硕士生导师。主持国家重点研发计划、国家自然科学基金青年基金、部委合作项目10余项,在包括SIGIR、CIKM、ECIR等会议上发表论文20余篇,获得省部级科技奖1项,并以负责人身份研制了多个实际应用系统。现为中国中文信息学会青年工作委员会委员。
目录
第1章 布尔检索 1
1.1 一个信息检索的例子 2
1.2 构建倒排索引的初体验 5
1.3 布尔查询的处理 8
1.4 对基本布尔操作的扩展及有序检索 11
1.5 参考文献及补充读物 13
第2章 词项词典及倒排记录表 14
2.1 文档分析及编码转换 14
2.1.1 字符序列的生成 14
2.1.2 文档单位的选择 16
2.2 词项集合的确定 16
2.2.1 词条化 16
2.2.2 去除停用词 19
2.2.3 词项归一化 20
2.2.4 词干还原和词形归并 23
2.3 基于跳表的倒排记录表快速合并算法 26
2.4 含位置信息的倒排记录表及短语查询 28
2.4.1 二元词索引 28
2.4.2 位置信息索引 29
2.4.3 混合索引机制 31
2.5 参考文献及补充读物 32
第3章 词典及容错式检索 34
3.1 词典搜索的数据结构 34
3.2 通配符查询 36
3.2.1 一般的通配符查询 37
3.2.2 支持通配符查询的k-gram索引 38
3.3 拼写校正 39
3.3.1 拼写校正的实现 39
3.3.2 拼写校正的方法 40
3.3.3 编辑距离 40
3.3.4 拼写校正中的 k-gram索引 42
3.3.5 上下文敏感的拼写校正 43
3.4 基于发音的校正技术 44
3.5 参考文献及补充读物 45
第4章 索引构建 46
4.1 硬件基础 46
4.2 基于块的排序索引方法 47
4.3 内存式单遍扫描索引构建方法 50
4.4 分布式索引构建方法 51
4.5 动态索引构建方法 54
4.6 其他索引类型 56
4.7 参考文献及补充读物 57
第5章 索引压缩 59
5.1 信息检索中词项的统计特性 59
5.1.1 Heaps定律:词项数目的估计 61
5.1.2 Zipf定律:对词项的分布建模 62
5.2 词典压缩 63
5.2.1 将词典看成单一字符串的压缩方法 63
5.2.2 按块存储 64
5.3 倒排记录表的压缩 66
5.3.1 可变字节码 67
5.3.2 γ编码 68
5.4 参考文献及补充读物 74
第6章 文档评分、词项权重计算及向量空间模型 76
6.1 参数化索引及域索引 76
6.1.1 域加权评分 78
6.1.2 权重学习 79
6.1.3 最优权重g 的计算 80
6.2 词项频率及权重计算 81
6.2.1 逆文档频率 81
6.2.2 tf-idf 权重计算 82
6.3 向量空间模型 83
6.3.1 内积 83
6.3.2 查询向量 86
6.3.3 向量相似度计算 87
6.4 其他tf-idf 权重计算方法 88
6.4.1 tf的亚线性尺度变换方法 88
6.4.2 基于最大值的tf归一化 88
6.4.3 文档权重和查询权重机制 89
6.4.4 文档长度的回转归一化 89
6.5 参考文献及补充读物 92
第7章 一个完整搜索系统中的评分计算 93
7.1 快速评分及排序 93
7.1.1 非精确返回前K篇文档的方法 94
7.1.2 索引去除技术 94
7.1.3 胜者表 95
7.1.4 静态得分和排序 95
7.1.5 影响度排序 96
7.1.6 簇剪枝方法 97
7.2 信息检索系统的组成 98
7.2.1 层次型索引 98
7.2.2 查询词项的邻近性 98
7.2.3 查询分析及文档评分函数的设计 99
7.2.4 搜索系统的组成 100
7.3 向量空间模型对各种查询操作的支持 101
7.3.1 布尔查询 101
7.3.2 通配符查询 102
7.3.3 短语查询 102
7.4 参考文献及补充读物 102
第8章 信息检索的评价 103
8.1 信息检索系统的评价 103
8.2 标准测试集 104
8.3 无序检索结果集合的评价 105
8.4 有序检索结果的评价方法 108
8.5 相关性判定 112
8.6 更广的视角看评价:系统质量及用户效用 115
8.6.1 系统相关问题 115
8.6.2 用户效用 115
8.6.3 对已有系统的改进 116
8.7 结果片段 116
8.8 参考文献及补充读物 118
第9章 相关反馈及查询扩展 120
9.1 相关反馈及伪相关反馈 120
9.1.1 Rocchio相关反馈算法 122
9.1.2 基于概率的相关反馈方法 125
9.1.3 相关反馈的作用时机 125
9.1.4 Web上的相关反馈 126
9.1.5 相关反馈策略的评价 127
9.1.6 伪相关反馈 127
9.1.7 间接相关反馈 128
9.1.8 小结 128
9.2 查询重构的全局方法 128
9.2.1 查询重构的词汇表工具 128
9.2.2 查询扩展 129
9.2.3 同义词词典的自动构建 130
9.3 参考文献及补充读物 131
第10章 XML检索 133
10.1 XML的基本概念 134
10.2 XML检索中的挑战性问题 137
10.3 基于向量空间模型的XML检索 140
10.4 XML检索的评价 144
10.5 XML检索:以文本为中心与以数据为中心的对比 146
10.6 参考文献及补充读物 148
第11章 概率检索模型 150
11.1 概率论基础知识 150
11.2 概率排序原理 151
11.2.1 1/0风险的情况 151
11.2.2 基于检索代价的概率排序原理 152
11.3 二值独立模型 152
11.3.1 排序函数的推导 153
11.3.2 理论上的概率估计方法 155
11.3.3 实际中的概率估计方法 156
11.3.4 基于概率的相关反馈方法 157
11.4 概率模型的相关评论及扩展 158
11.4.1 概率模型的评论 158
11.4.2 词项之间的树型依赖 159
11.4.3 Okapi BM25:一个非二值的模型 160
11.4.4 IR中的贝叶斯网络方法 161
11.5 参考文献及补充读物 162
第12章 基于语言建模的信息检索模型 163
12.1 语言模型 163
12.1.1 有穷自动机和语言模型 163
12.1.2 语言模型的种类 165
12.1.3 词的多项式分布 166
12.2 查询似然模型 167
12.2.1 IR中的查询似然模型 167
12.2.2 查询生成概率的估计 167
12.2.3 Ponte和Croft进行的实验 169
12.3 语言建模的方法与其他检索方法的比较 171
12.4 扩展的LM方法 172
12.5 参考文献及补充读物 173
第13章 文本分类及朴素贝叶斯方法 175
13.1 文本分类问题 177
13.2 朴素贝叶斯文本分类 178
13.3 伯努利模型 182
13.4 NB的性质 183
13.5 特征选择 188
13.5.1 互信息 188
13.5.2 统计量 191
13.5.3 基于频率的特征选择方法 192
13.5.4 多类问题的特征选择方法 193
13.5.5 不同特征选择方法的比较 193
13.6 文本分类的评价 194
13.7 参考文献及补充读物 199
第14章 基于向量空间模型的文本分类 200
14.1 文档表示及向量空间中的关联度计算 201
14.2 Rocchio分类方法 202
14.3 k近邻分类器 205
14.4 线性及非线性分类器 209
14.5 多类问题的分类 212
14.6 偏差—方差折中准则 214
14.7 参考文献及补充读物 219
第15章 支持向量机及文档机器学习方法 221
15.1 二类线性可分条件下的支持向量机 221
15.2 支持向量机的扩展 226
15.2.1 软间隔分类 226
15.2.2 多类情况下的支持向量机 228
15.2.3 非线性支持向量机 228
15.2.4 实验结果 230
15.3 有关文本文档分类的考虑 231
15.3.1 分类器类型的选择 232
15.3.2 分类器效果的提高 233
15.4 ad hoc检索中的机器学习方法 236
15.4.1 基于机器学习评分的简单例子 236
15.4.2 基于机器学习的检索结果排序 238
15.5 参考文献及补充读物 239
第16章 扁平聚类 241
16.1 信息检索中的聚类应用 242
16.2 问题描述 244
16.3 聚类算法的评价 246
16.4 K-均值算法 248
16.5 基于模型的聚类 254
16.6 参考文献及补充读物 258
第17章 层次聚类 260
17.1 凝聚式层次聚类 260
17.2 单连接及全连接聚类算法 263
17.3 组平均凝聚式聚类 268
17.4 质心聚类 269
17.5 层次凝聚式聚类的最优性 270
17.6 分裂式聚类 272
17.7 簇标签生成 273
17.8 实施中的注意事项 274
17.9 参考文献及补充读物 275
第18章 矩阵分解及隐性语义索引 277
18.1 线性代数基础 277
18.2 词项—文档矩阵及SVD 280
18.3 低秩逼近 282
18.4 LSI 284
18.5 参考文献及补充读物 288
第19章 Web搜索基础 289
19.1 背景和历史 289
19.2 Web的特性 290
19.2.1 Web图 291
19.2.2 作弊网页 293
19.3 广告经济模型 294
19.4 搜索用户体验 296
19.5 索引规模及其估计 297
19.6 近似重复及搭叠 300
19.7 参考文献及补充读物 303
第20章 Web采集及索引 304
20.1 概述 304
20.1.1 采集器必须提供的功能特点 304
20.1.2 采集器应该提供的功能特点 304
20.2 采集 305
20.2.1 采集器架构 305
20.2.2 DNS解析 308
20.2.3 待采集URL池 309
20.3 分布式索引 311
20.4 连接服务器 312
20.5 参考文献及补充读物 314
第21章 链接分析 316
T21.1 Web图T 316
T21.2 PageRankT 318
21.2.1 马尔科夫链 318
21.2.2 PageRank的计算 320
21.2.3 T面向主题的PageRankT 322
T21.3 Hub网页及Authority网页T 325
T21.4 参考文献及补充读物T 329
参考文献 331
索引 356
内容摘要
本书是信息检索的教材,旨在从计算机科学的视角提供一种现代的信息检索方法。书中从基本概念讲解网络搜索以及文本分类和文本聚类等,对收集、索引和搜索文档系统的设计和实现的方方面面、评估系统的方法、机器学习方法在文本收集中的应用等给出了最新的讲解。
主编推荐
信息检索领域知名科学家扛鼎之作,斯坦福大学教材 重点展示搜索引擎核心技术以及机器学习和数值计算方法 什么是排序SVM、XML、DNS和LSI?什么是信息检索中的垃圾信息、隐藏页和门页?MapReduce和其他一些并行运算方法是如何实现由兆字节到百万兆字节的飞跃的?这些问题你都能从本书中找到答案。本书次将构建Web搜索引擎的复杂过程以一种清晰的全景方式展现给读者。——Peter Norvig,计算机科学家,Google研发总监 本书对信息检索这个举足轻重、发展迅猛的领域进行了全面、准确的介绍,是一本不可多得的教材。——Raymond Mooney,得克萨斯大学奥斯汀分校教授 本书选材,对信息检索的基础知识和发展方向进行了生动描述。——Jon Kleinberg,康奈尔大学教授
精彩内容
本书是信息检索的教材,旨在从计算机科学的视角提供一种现代的信息检索方法。书中从基本概念讲解网络搜索以及文本分类和文本聚类等,对收集、索引和搜索文档系统的设计和实现的方方面面、评估系统的方法、机器学习方法在文本收集中的应用等给出了最新的讲解。
媒体评论
信息检索领域知名科学家扛鼎之作,斯坦福大学教材
重点展示搜索引擎核心技术以及机器学习和数值计算方法
什么是排序SVM、XML、DNS和LSI?什么是信息检索中的垃圾信息、隐藏页和门页?MapReduce和其他一些并行运算方法是如何实现由兆字节到百万兆字节的飞跃的?这些问题你都能从本书中找到答案。本书首次将构建Web搜索引擎的复杂过程以一种清晰的全景方式展现给读者。——Peter Norvig,计算机科学家,Google研发总监
本书对信息检索这个举足轻重、发展迅猛的领域进行了全面、准确的介绍,是一本不可多得的教材。——Raymond Mooney,得克萨斯大学奥斯汀分校教授
本书选材独特,对信息检索的基础知识和发展方向进行了生动描述。——Jon Kleinberg,康奈尔大学教授
— 没有更多了 —
以下为对购买帮助不大的评价