• harmonic analysis、调和分析、实分析、real analysis
  • harmonic analysis、调和分析、实分析、real analysis
  • harmonic analysis、调和分析、实分析、real analysis
  • harmonic analysis、调和分析、实分析、real analysis
  • harmonic analysis、调和分析、实分析、real analysis
  • harmonic analysis、调和分析、实分析、real analysis
  • harmonic analysis、调和分析、实分析、real analysis
  • harmonic analysis、调和分析、实分析、real analysis
  • harmonic analysis、调和分析、实分析、real analysis
  • harmonic analysis、调和分析、实分析、real analysis
21年品牌 40万+商家 超1.5亿件商品

harmonic analysis、调和分析、实分析、real analysis

140 八品

仅1件

陕西西安
认证卖家担保交易快速发货售后保障

作者[法]赛尔 著

出版社世界图书出版公司

出版时间2008-10

版次1

装帧平装

上书时间2024-12-08

大衍求一的书摊

已实名 进店 收藏店铺

   商品详情   

品相描述:八品
图书标准信息
  • 作者 [法]赛尔 著
  • 出版社 世界图书出版公司
  • 出版时间 2008-10
  • 版次 1
  • ISBN 9787506292597
  • 定价 35.00元
  • 装帧 平装
  • 开本 24开
  • 纸张 胶版纸
  • 页数 170页
  • 正文语种 英语
【内容简介】
  《有限群的线性表示》是一部非常经典的介绍有限群线性表示的教程,原版曾多次修订重印,作者是当今法国最突出的数学家之一,他对理论数学有全面的了解,尤以著述清晰、明了闻名。《有限群的线性表示》是他写的为数不多的教科书之一,原文是法文(1971年版),后出了德译本和英译本。《有限群的线性表示》是英译本的重印本。它篇幅不大,但深入浅出的介绍了有限群的线性表示,并给出了在量子化学等方面的应用,便于广大数学、物理、化学工作者初学时阅读和参考。
【目录】
PartⅠ
RepresentationsandCharacters
1Generalitiesonlinearrepresentations
1.1Definitions
1.2Basicexamples
1.3Submpmsentations
1.4Irreduciblerepresentations
1.5Tensorproductoftworepresentations
1.6Symmetricsquareandalternatingsquare

2Charactertheory
2.1Thecharacterofarepresentation
2.2Schurslemma;basicapplications
2.30rthogonalityrelationsforcharacters
2.4Decompositionoftheregularrepresentation
2.5Numberofirreduciblerepresentations
2.6Canonicaldecompositionofarepresentation
2.7Explicitdecompositionofarepresentation

3Subgroups,products,inducedrepresentations
3.1Abeliansubgroups
3.2Productoftwogroups
3.3Inducedrepresentations

4Compactgroups
4.1Compactgroups
4.2lnvariantmeasureonacompactgroup
4.3Linearrepresentationsofcompactgroups

5Examples
5.1ThecyclicGroup
5.2Thegroup
5.3Thedihedralgroup
5.4Thegroup
5.5Thegroup
5.6Thegroup
5.7Thealternatinggroup
5.8Thesymmetricgroup
5.9Thegroupofthecube
Bibliography:PartⅠ

PartⅡ
RepresentationsinCharacteristicZero
6Thegroupalgebra
6.1Representationsandmodules
6.2DecompositionofC[G]
6.3ThecenterofC[G]
6.4Basicpropertiesofintegers
6.5lntegralitypropertiesofcharacters.Applications

7Inducedrepresentations;Mackeyscriterion
7.1Induction
7.2Thecharacterofaninducedrepresentation;
thereciprocityformula
7.3Restrictiontosubgroups
7.4Mackeysirreducibilitycriterion

8Examplesofinducedrepresentations
8.lNormalsubgroups;applicationstothedegreesofthe
ineduciblerepresentations
8.2Semidirectproductsbyanaheliangroup
8.3Areviewofsomeclassesoffinitegroups
8.4Syiowstheorem
8.5Linearrepresentationsofsuperselvablegroups

9Artinstheorem
9.1TheringR(G)
9.2StatementofArtinstheorem
9.3Firstproof
9.4Secondproofof(i)=(ii)

10AtheoremofBrauer
10.1p-regularelements;p-elementarysubgroups
10.2Inducedcharactersarisingfromp-elementary
subgroups
10.3Constructionofcharacters
10.4Proofoftheorems18and18
10.5Brauerstheorem

11ApplicationsofBrauerstheorem
11.1Characterizationofcharacters
11.2AtheoremofFrobenius
11.3AconversetoBrauerstheorem
11.4ThespectrumofAR(G)

12Rationalityquestions
12.1TheringsRK(G)andRK(G)
12.2Schurindices
12.3Realizabilityovercyclotomicfields
12.4TherankofRK(G)
12.5GeneralizationofArtinstheorem
12.6GeneralizationofBrauerstheorem
12.7Proofoftheorem28

13Rationalityquestions:examples
13.IThefieldQ
13.2ThefieldR
Bibliography:PartⅡ

PartⅢ
IntroductiontoBrauerTheory
14ThegroupsRK(G),R(G),andPk(G)
14.1TheringsRK(G)andR,(G)
14.2ThegroupsPk(G)andP^(G)
14.3StructureofPk(G)
14.4StructureofPA(G)
14.5Dualities
14.6Scalarextensions

15Thecdetriangle
15.1Definitionofc:Pk(G)——Rk(G)
15.2Definitionofd:Rs(G)——Rk(G)
15.3Definitionofe:Pk(G)——RK(G)
15.4Basicpropertiesofthecdetriangle
15.5Example:p-gmups
15.6Example:p-groups
15.7Example:productsofp-groupsandp-groups

16Theorems
16.1Propertiesofthecdetriangle
16.2Characterizationoftheimageofe
16.3CharacterizationofprojectiveA[G]-modules
bytheircharacters
16.4ExamplesofprojectiveA[G]-modules:irreducible
representationsofdefectzero

17Proofs
17.IChangeofgroups
17.2Brauerstheoreminthemodularcase
17.3Proofoftheorem33
17.4Proofoftheorem35
17.5Proofoftheorem37
17.6Proofoftheorem38

18Modularcharacters
18.1Themodularcharacterofarepresentation
18.2Independenceofmodularcharacters
18.3Reformulations
18.4Asectionford
18.5Example:Modularcharactersofthesymmetricgroup
18.6Example:Modularcharactersofthealternatinggroup

19ApplicationtoArtinrepresentations
19.1ArtinandSwanrepresentations
19.2RationalityoftheArtinandSwanrepresentations
19.3Aninvariant

Appendix
Bibliography:PartⅢ
Indexofnotation
Indexofterminology
点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP