代数几何.I,复射影簇 Algebraic Geometry I: Complex Projective Varieties,algebraic geometry 代数几何 数论 number theory 代数曲线 Mumford 的名著
Mumford 的名著,没有划痕
¥
85
九品
仅1件
作者 [英]姆佛尔德 著
出版社 世界图书出版公司
出版时间 2008-11
版次 1
装帧 平装
上书时间 2024-09-07
商品详情
品相描述:九品
图书标准信息
作者
[英]姆佛尔德 著
出版社
世界图书出版公司
出版时间
2008-11
版次
1
ISBN
9787506292122
定价
29.00元
装帧
平装
开本
24开
纸张
胶版纸
页数
186页
正文语种
英语
原版书名
Algebraic Geometry I: Complex Projective Varieties
【内容简介】
《代数几何(第1卷):复射影簇》是时下为数不多的代数几何的经典教材之一,已被众多学校用做教学参考书。与《代数几何(第1卷):复射影簇》相配套的教材《TheRedBookofVarietiesandSchemes》和《AlgebraicGeometryGTM52》也已影印出版。代数几何是近代以来发展迅速的一门数学的分支学科,与其他领域的许多学科有着紧密的联系,也是高等院校数学专业研究生阶段所开设的一门非常重要的基础课程。《代数几何(第1卷):复射影簇》是由作者多年来在各处讲授代数几何课的笔记,经多次修订后整理成册。《代数几何(第1卷):复射影簇》的前一部分主要介绍了复射影簇,后一部分则重点探讨了概型,内容包括概型的凝聚层的上同调与应用。《代数几何(第1卷):复射影簇》适用于数学专业的二年级研究生及需要相关知识的其他领域的专家学者。
【作者简介】
About the Author Biography of David Mumford David Mumford was born on June 11, 1937 in England and has been associated with Harvard University continuously from entering as freshman to his present position of Higgins Professor of Mathematics. Mumford worked in the fields of Algebraic Gemetry in the 60's and 70's, concentrating especially on the theory of moduli spaces: spaces which classify all objects of some type, such as all curves of a given genus or all vector bundles on a fixed curve of given rank and degree. Mumford was awarded the Fields Medal in 1974 for his work on moduli spaces and algebraic surfaces. He is presently working on the mathematics of pattern recognition and artificial intelligence.
【目录】
Introduction Prerequisites Chapter1.AffineVarieties 1A.TheirDefinition,TangentSpace,Dimension,SmoothandSingularPoints. 1B.AnalyticUniformizationatSmoothPoints,ExamplesofTopologicalKnottednessatSingularPoints 1C.Ox,xaUFDwhenxSmooth;DivisorofZeroesandPolesofFunctions Chapter2.ProjectiveVarieties 2A.TheirDefinition,ExtensionofConceptsfromAftinetoProjectiveCase 2B.Products,SegreEmbedding,Correspondences 2C.EliminationTheory,Noether'sNormalizationLemma,DensityofZariski-OpenSets Chapter3.StructureofCorrespondences 3A.LocalProperties——SmoothMaps,FundamentalOpennessPrinciple,Zariski'sMainTheorem 3B.GlobalPropcrties——Zariski'sConnectednessTheorem,SpecializationPrinciple 3C.IntersectionsonSmoothVarieties Chapter4.Chow'sTheorem 4A.InternallyandExternallyDefinedAnalyticSetsandtheirLocalDescriptionsasBranchedCoveringsofC'. 4B.ApplicationstoUniquenessofAlgebraicStructureandConnectedness Chapter5.DegreeofaProjectiveVariety 5A.DefinitionofdegX,multxX,oftheBlowupBx(X),EffectofaProjection,Examples 5B.Bezout'sTheorem 5C.VolumeofaProjectiveVariety;ReviewofHomology,DeRham'sTheorem,VarietiesasMinimalSubmanifolds Chapter6.LinearSystems 6A.TheCorrespondencebetweenLinearSystemsandRationalMaps,Examples;CompleteLinearSystemsareFinite-Dimensional 6B.DifferentialForms,CanonicalDivisorsandBranchLoci 6C.HilbertPolynomials,RelationswithDegree AppendixtoChapter6.TheWeil-SamuelAlgebraicTheoryofMultiplicity Chapter7.CurvesandTheirGenus 7A.ExistenceandUniquenessoftheNon-SingularModelofEachFunctionFieldofTranscendenceDegree1(afterAlbanese) 7B.ArithmeticGenus=TopologicalGenus;ExistenceofGoodProjectionstop1,p2,p3 7C.ResiduesofDifferentialsonCurves,theClassicalRiemann-RochTheoremforCurvesandApplications 7D.CurvesofGenus1asPlaneCubicsandasComplexToriC/L Chapter8.TheBirationalGeometryofSurfaces 8A.GeneralitiesonBlowingupPoints 8B.ResolutionofSingularitiesofCurvesonaSmoothSurfacebyBlowinguptheSurface;Examples 8C.FactorizationofBirationalMapsbetweenSmoothSurfaces;theTreesofInfinitelyNearPoints 8D.TheBirationalMapbetweenP“andtheQuadricandCubicSurfaces;the27LinesonaCubicSurface Bibliography ListofNotations Index
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价