基于机器学习的轴承智能健康预警与故障预测
¥
50
3.7折
¥
135
九品
仅1件
作者毛文涛、李源、陈佳鲜 著
出版社科学出版社
出版时间2021-01
版次1
装帧平装
货号9.2
上书时间2025-01-09
商品详情
- 品相描述:九品
图书标准信息
-
作者
毛文涛、李源、陈佳鲜 著
-
出版社
科学出版社
-
出版时间
2021-01
-
版次
1
-
ISBN
9787030672056
-
定价
135.00元
-
装帧
平装
-
开本
16开
-
页数
231页
- 【内容简介】
-
本书为数据驱动的轴承智能化故障检测、故障诊断和剩余寿命预测提供了较为完整的机器学习解决方案。第1章介绍了轴承健康预警与故障预测的意义、发展趋势、国内外研究现状和关键挑战;第2章介绍了常用的机器学习理论基础;第3~5章介绍了故障诊断方法,分别采用深度学习、不均衡分类、结构化学习、在线学习等机器学习算法形式;第6章和第7章介绍了早期故障的在线检测问题,分别采用半监督学习、深度学习和迁移学习等机器学习算法形式;第8章和第9章介绍了剩余寿命预测问题,着重介绍了时序深度学习和迁移学习的解决方案。
本书可作为计算机、自动控制、机械工程、工业工程等学科的研究生和本科生的教学用书及参考用书,同时对从事系统维护、可靠性管理、智能制造等领域的科研人员及工程技术人员具有一定的参考价值。
- 【作者简介】
-
毛文涛,教授,工学博士,硕士生导师,主要研究方向为机器学习、智能故障诊断和预测。河南省高校科技创新人才、河南省高校青年骨干教师。主要研究工作集中在机器学习理论及其在旋转机械健康管理领域的应用。主持国家自然科学基金2项、各类省部级项目1 0余项。获河南省高等教育教学成果奖二等奖、自然科学优秀论文奖一等奖、西安交通大学优秀博士学位论文奖等多项奖励。2016年以来,在MssP、IEEETsMc―B、IEEE TIM、《自动化学报》、《控制与决策》等国内外权威学术期刊和会议发表学术论文50余篇,其中EsI热点论文1篇,EsI高被引论文5篇。
- 【目录】
-
第1章 绪论
1.1 引言
1.1.1 国家与社会的巨大需求
1.1.2 智能健康预警与故障预测的重要作用
1.1.3 机器学习的重要作用
1.2 轴承早期故障检测方法研究现状
1.3 轴承故障诊断方法研究现状
1.4 轴承剩余寿命方法研究现状
1.5 轴承智能健康预警与故障预测面临的挑战
1.6 数据集介绍
参考文献
第2章 机器学习理论基础
2.1 浅层学习模型
2.1.1 感知机
2.1.2 决策树
2.1.3 Logistic回归
2.1.4 支持向量机
2.1.5 朴素贝叶斯算法
2.1.6 支持向量数据描述
2.2 深度学习模型
2.2.1 传统神经网络模型
2.2.2 卷积神经网络
2.2.3 自编码神经网络
2.2.4 深度置信网络
2.2.5 循环神经网络
2.2.6 长短时记忆网络
2.2.7 生成对抗网络
2.3 本章小结
参考文献
第3章 故障特征表示与诊断模型构建
3.1 基于浅层模型的故障诊断
3.1.1 异构故障特征表示
3.1.2 故障诊断模型构建
3.2 基于深度神经网络的故障诊断方法
3.2.1 极限学习机自编码器
3.2.2 滚动轴承的深度特征提取方法
3.2.3 实验结果
3.3 基于生成对抗网络的故障样本合成与诊断
3.3.1 不均衡类别的故障诊断
3.3.2 基于GAN和SDAE模型的不均衡故障诊断
3.3.3 实验结果
3.4 本章小结
参考文献
第4章 结构化学习与多故障状态诊断
4.1 基于结构化特征选择的故障诊断方法
4.1.1 引言
4.1.2 基于特征相关性的结构化特征选择算法
4.1.3 模型求解
4.1.4 实验结果
4.2 基于深度输出核学习的多故障状态诊断
4.2.1 引言
4.2.2 深度输出核网络模型
4.2.3 实验设置
4.2.4 实验结果
4.3 基于结构化深度自编码器的多故障状态诊断
4.3.1 结构化自编码器模型构建
4.3.2 目标函数求解
4.3.3 实验结果分析
4.4 本章小结
参考文献
第5章 在线学习与在线故障诊断
5.1 基于极限学习机的在线不均衡故障诊断
5.1.1 引言
5.1.2 基于粒划分的在线不均衡分类
5.1.3 可靠性理论分析
5.1.4 实验结果分析
5.2 基于增量支持向量机和深度特征表示的在线故障诊断
5.2.1 增量模型构建
5.2.2 实验结果
5.3 本章小结
参考文献
第6章 深度学习与早期故障在线检测
6.1 基于半监督框架和深度特征表示的早期故障在线检测
6.1.1 引言
6.1.2 深度特征表示与模型更新
6.1.3 早期故障指标构建
6.1.4 性能分析
6.1.5 对比实验结果
6.2 基于深度特征自适应匹配的早期故障在线检测
6.2.1 引言
6.2.2 离线深度特征建模
6.2.3 在线自适应特征匹配
6.2.4 实验结果分析
6.2.5 实验验证
6.3 本章小结
参考文献
第7章 深度迁移学习与早期故障在线检测
7.1 基于振动信号可视化迁移的早期故障在线检测
7.1.1 数据处理
7.1.2 深度迁移特征提取模型的构建
7.1.3 检测模型构建
7.1.4 实验结果
7.2 基于多域迁移深度自编码网络的早期故障在线检测
7.2.1 多域迁移深度自编码网络
7.2.2 异常检测模型
7.2.3 实验结果
7.3 本章小结
参考文献
第8章 深度学习与轴承剩余寿命预测
8.1 基于深度特征表示和长短时记忆网络的RUL预测
8.1.1 轴承健康状态划分方法
8.1.2 轴承退化过程深度特征表示
8.1.3 故障阈值与剩余寿命确定
8.1.4 基于LSTM网络的预测模型
8.2 实验设置
8.2.1 信号预处理
8.2.2 状态划分和深度特征表示
8.2.3 剩余寿命确定结果
8.3 实验结果
8.4 本章小结
参考文献
第9章 迁移学习与跨工况剩余寿命预测
9.1 RUL迁移学习预测的问题描述
9.2 基于深度特征表示和迁移学习的轴承剩余寿命预测方法
9.2.1 信号预处理和深度特征提取
9.2.2 轴承退化状态划分方法
9.2.3 基于深度特征的迁移成分分析
9.2.4 实验结果
9.3 基于深度时序特征迁移的轴承剩余寿命预测方法
9.3.1 基于深度时序特征的健康指标构建
9.3.2 面向序列迁移的领域自适应
9.3.3 基于迁移回归模型的轴承剩余寿命预测方法
9.3.4 实验结果
9.4 本章小结
参考文献
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价