交换代数:Commutative Algebra With a View Toward Algebraic Geometry
定价189版本
¥
99
8.4折
¥
118
全新
仅1件
作者艾森巴德(David Eisenbud) 著;世界图书出版公司北京公司 编
出版社世界图书出版公司
出版时间2004-01
版次1
装帧平装
上书时间2024-11-10
商品详情
- 品相描述:全新
-
未拆塑封,图上褶皱为塑封褶皱,不涉及书本体
图书标准信息
-
作者
艾森巴德(David Eisenbud) 著;世界图书出版公司北京公司 编
-
出版社
世界图书出版公司
-
出版时间
2004-01
-
版次
1
-
ISBN
9787506292450
-
定价
118.00元
-
装帧
平装
-
开本
16开
-
纸张
胶版纸
-
页数
797页
-
正文语种
英语
- 【内容简介】
-
ThisbookprovidesanintroductiontoLiegroups,Liealgebras,andrepresentationtheory,aimedatgraduatestudentsinmathematicsandphysics.Althoughtherearealreadyseveralexcellentbooksthatcovermanyofthesametopics,thisbookhastwodistinctivefeaturesthatIhopewillmakeitausefuladditiontotheliterature.First,ittreatsLiegroups(notjustLiealgebras)inawaythatminimizestheamountofmanifoldtheoryneeded.Thus,Ineitherassumeapriorcourseondifferentiablemanifoldsnorprovideacon-densedsuchcourseinthebeginningchapters.Second,thisbookprovidesagentleintroductiontothemachineryofsemisimplegroupsandLiealgebrasbytreatingtherepresentationtheoryofSU(2)andSU(3)indetailbeforegoingtothegeneralcase.Thisallowsthereadertoseeroots,weights,andtheWeylgroup"inaction"insimplecasesbeforeconfrontingthegeneraltheory.
ThestandardbooksonLietheorybeginimmediatelywiththegeneralcase:asmoothmanifoldthatisalsoagroup.TheLiealgebraisthendefinedasthespaceofleft-invariantvectorfieldsandtheexponentialmappingisdefinedintermsoftheflowalongsuchvectorfields.Thisapproachisundoubtedlytherightoneinthelongrun,butitisratherabstractforareaderencounteringsuchthingsforthefirsttime.Furthermore,withthisapproach,onemusteitherassumethereaderisfamiliarwiththetheoryofdifferentiablemanifolds(whichrulesoutasubstantialpartofonesaudience)oronemustspendconsiderabletimeatthebeginningofthebookexplainingthistheory(inwhichcase,ittakesalongtimetogettoLietheoryproper).
- 【作者简介】
-
D.Eisenbud,加利福尼亚大学(University of California)数学系教授。加州大学,位于美国加州的一个由数所公立大学组成的大学系统,也是世界上影响力的公立大学系统,被誉为‘全世界好的公立大学‘和‘公立高等教育的典范‘。
|
- 【目录】
-
Introduction
AdvicefortheBeginner
InformationfortheExpert
Prerequisites
Sources
Courses
Acknowledgements
0ElementaryDefinitions
0.1RingsandIdeals
0.2UniqueFactorization
0.3Modules
ⅠBasicConstructions
1RootsofCommutativeAlgebra
1.1NumberTheory
1.2AlgebraicCurvesandFhnctionTheory
1.3InvariantTheory
1.4TheBasisTheorem
1.5GradedRings
1.6AlgebraandGeometry:TheNullstellensatz
1.7GeometricInvariantTheory
1.8ProjectiveVarieties
1.9HilbertFunctionsandPolynomials
1.10FreeResolutionsandtheSyzygyTheorem
1.11Exercises
2Localization
2.1Fractions
2.2HornandTensor
2.3TheConstructionofPrimes
2.4RingsandModulesofFiniteLength
2.5ProductsofDomains
2.6Exercises
3AssociatedPrimesandPrimaryDecomposition
3.1AssociatedPrimes
3.2PrimeAvoidance
3.3PrimaryDecomposition
3.4PrimaryDecompositionandFactoriality
3.5PrimaryDecompositionintheGradedCase
3.6ExtractingInformationfromPrimaryDecomposition
3.7WhyPrimaryDecompositionIsNotUnique
3.8GeometricInterpretationofPrimaryDecomposition
3.9SymbolicPowersandFunctionsVanishingtoHighOrder
3.10Exercises
4IntegralDependenceandtheNullstellensatz
4.1TheCayley-HamiltonTheoremandNakayamasLemma
4.2NormalDomainsandtheNormalizationProcess
4.3NormalizationintheAnalyticCase
4.4PrimesinanIntegralExtension
4.5TheNullstellensatz
4.6Exercises
5FiltrationsandtheArtin-ReesLemma
5.1AssociatedGradedRingsandModules
5.2TheBlowupAlgebra
5.3TheKrullIntersectionTheorem
5.4TheTangentCone
5.5Exercises
6FlatFamilies
6.1ElementaryExamples
6.2IntroductiontoTor
6.3CriteriaforFlatness
6.4TheLocalCriterionforFlatness
6.5TheReesAlgebra
6.6Exercises
7CompletionsandHenselsLemma
7.1ExamplesandDefinitions
7.2TheUtilityofCompletions
7.3LiftingIdempotents
7.4CohenStructureTheoryandCoefficientFields
7.5BasicPropertiesofCompletion
7.6MapsfromPowerSeriesRings
7.7Exercises
ⅡDimensionTheory
8IntroductiontoDimensionTheory
8.1AxiomsforDimension
8.2OtherCharacterizationsofDimensionFundamentalDefinitionsofDimensionTheory
9.1DimensionZero
9.2Exercises
10ThePrincipalIdealTheoremandSystemsofParameters
10.1SystemsofParametersandIdealsofFiniteColength
10.2DimensionofBaseandFiber
10.3RegularLocalRings
10.4Exercises
11DimensionandCodimensionOne
11.1DiscreteValuationRings
11.2NormalRingsandSerresCriterion
11.3InvertibleModules
11.4UniqueFactorizationofCodimension-OneIdeals
11.5DivisorsandMultiplicities
11.6MultiplicityofPrincipalIdeals
11.7Exercises
12DimensionandHilbert-SamuelPolynomials
12.1Hilbert-SamuelFunctions
12.2Exercises
13TheDimensionofAffineRings
13.1NoetherNormalization
13.2TheNullstellensatz
13.3FinitenessoftheIntegralClosure
13.4Exercises
14EliminationTheory,GenericFreeness,andtheDimensionofFibers
14.1EliminationTheory
14.2GenericPreeness
14.3TheDimensionofFibers
14.4Exercises
15GrSbnerBases
15.1MonomialsandTerms
15.2MonomialOrders
15.3TheDivisionAlgorithm
15.4Gr5bnerBases
15.5Syzygies
15.6HistoryofGr5bnerBases
15.7APropertyofReverseLexicographicOrder
15.8Gr5bnerBasesandFlatFamilies
15.9GenericInitialIdeals
15.10Applications
15.11Exercises
15.12Appendix:SomeComputerAlgebraProjects
16ModulesofDifferentials
16.1ComputationofDifferentials
16.2DifferentialsandtheCotangentBundle
16.3ColimitsandLocalization
16.4TangentVectorFieldsandInfinitesimalMorphisms
16.5DifferentialsandFieldExtensions
16.6JacobianCriterionforRegularity
16.7SmoothnessandGenericSmoothness
16.8Appendix:AnotherConstructionofKahlerDifferentials
16.9Exercises
ⅢHomologicalMethods
17RegularSequencesandtheKoszulComplex
17.1KoszulComplexesofLengthsIand2
17.2KoszulComplexesinGeneral
17.3BuildingtheKoszulComplexfromParts
17.4DualityandHomotopies
17.5TheKoszulComplexandtheCotangentBundleofProjectiveSpace
17.6Exercises
18Depth,Codimension,andCohen-MacaulayRings
18.1Depth
18.2Cohen-MacaulayRings
18.3ProvingPrimenesswithSerresCriterion
18.4FlatnessandDepth
18.5SomeExamples
18.6Exercises
19HomologicalTheoryofRegularLocalRings
19.1ProjectiveDimensionandMinimalResolutions
19.2GlobalDimensionandtheSyzygyTheorem
19.3DepthandProjectiveDimension:TheAuslander-BuchsbaumFormula
19.4StablyFreeModulesandFactorialityofRegularLocalRings
19.5Exercises
20FreeResolutionsandFittingInvariants
20.1TheUniquenessofFreeResolutions
20.2FittingIdeals
20.3WhatMakesaComplexExact?
20.4TheHilbert-BurchTheorem
20.5Castelnuovo-MumfordRegularity
20.6Exercises
21Duality,CanonicalModules,andGorensteinRings
21.1DualityforModulesofFiniteLength
21.2Zero-DimensionalGorensteinRings
21.3CanonicalModulesandGorensteinRingsinHigherDimension
21.4MaximalCohen-MacaulayModules
21.5ModulesofFiniteInjectiveDimension
21.6Uniquenessand(Often)Existence
21.7LocalizationandCompletionoftheCanonicalModule
21.8CompleteIntersectionsandOtherGorensteinRings
21.9DualityforMaximalCohen-MacaulayModules
21.10Linkage
21.11DualityintheGradedCase
21.12Exercises
Appendix1FieldTheory
A1.1TranscendenceDegree
A1.2Separability
A1.3p-Bases
Appendix2MultilinearAlgebra
A2.1Introduction
A2.2TensorProducts
A2.3SymmetricandExteriorAlgebras
A2.4CoalgebraStructuresandDividedPowers
A2.5SchurFunctors
A2.6ComplexesConstructedbyMultilinearAlgebra
Appendix3HomologicalAlgebra
A3.1Introduction
PartI:ResolutionsandDerivedFunctors
A3.2FreeandProjectiveModules
A3.3FreeandProjectiveResolutions
A3.4InjectiveModulesandResolutions
A3.5BasicConstructionswithComplexes
A3.6MapsandHomotopiesofComplexes
A3.7ExactSequencesofComplexes
A3.8TheLongExactSequenceinHomology
A3.9DerivedFunctors
A3.10Tor
A3.11Ext
PartⅡI:FromMappingConestoSpectralSequences
A3.12TheMappingConeandDoubleComplexes
A3.13SpectralSequences
A3.14DerivedCategories
Appendix4ASketchofLocalCohomology
A4.1LocalCohomologyandGlobalCohomology
A4.2LocalDuality
A4.3DepthandDimension
Appendix5CategoryTheory
A5.1Categories,Functors,andNaturalTransformations
A5.2AdjointFunctors
A5.3RepresentableFunctorsandYonedasLemma
Appendix6LimitsandColimits
A6.1ColimitsintheCategoryofModules
A6.2FlatModulesasColimitsofFreeModules
A6.3ColimitsintheCategoryofCommutativeAlgebras
A6.4Exercises
Appendix7WhereNext
HintsandSolutionsforSelectedExercises
References
IndexofNotation
Index
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价