• 人工智能数学基础
  • 人工智能数学基础
21年品牌 40万+商家 超1.5亿件商品

人工智能数学基础

28 2.4折 119 全新

仅1件

北京怀柔
认证卖家担保交易快速发货售后保障

作者唐宇迪 著

出版社北京大学出版社

出版时间2020-10

版次1

装帧平装

上书时间2024-11-25

绵确鑫雨

已实名 进店 收藏店铺

   商品详情   

品相描述:全新
图书标准信息
  • 作者 唐宇迪 著
  • 出版社 北京大学出版社
  • 出版时间 2020-10
  • 版次 1
  • ISBN 9787301314319
  • 定价 119.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 550页
  • 字数 809千字
【内容简介】

  本书以零基础讲解为宗旨,面向学习数据科学与人工智能的读者,通俗地讲解每一个知识点,旨在帮助读者快速打下数学基础。 
  全书分为 4 篇,共 17 章。其中第 1 篇为数学知识基础篇,主要讲述了高等数学基础、微积分、泰勒公式与拉格朗日乘子法;第 2 篇为数学知识核心篇,主要讲述了线性代数基础、特征值与矩阵分解、概率论基础、随机变量与概率估计;第 3 篇为数学知识提高篇,主要讲述了数据科学的几种分布、核函数变换、熵与激活函数;第 4 篇为数学知识应用篇,主要讲述了回归分析、假设检验、相关分析、方差分析、聚类分析、贝叶斯分析等内容。 
  本书适合准备从事数据科学与人工智能相关行业的读者。

【作者简介】
  唐宇迪,计算机专业博士,网易云课堂人工智能认证行家,51CTO学院讲师,CSDN博客专家。 

  李琳,河南工业大学副教授,在软件工程、机器学习、人工智能和模式识别等领域有深入研究。 

  侯惠芳,教授,解放军信息工程大学通信与信息系统专业博士,擅长机器学习、大数据检索、人工智能和模式识别等。 

  王社伟,河南工业大学副教授,西北工业大学航空宇航制造专业博士,挪威科技大学访问学者,对数字化制造、企业管理系统、机器学习、数据挖掘等有丰富的实战经验。
【目录】
第1 章 人工智能与数学基础..........1 

1.1 什么是人工智能............................ 2 

1.2 人工智能的发展 ............................ 2 

1.3 人工智能的应用 ............................ 4 

1.4 学习人工智能需要哪些知识 ............. 5 

1.5 为什么要学习数学 ......................... 7 

1.6 本书包括的数学知识 ...................... 8 

第 1 篇 

基础篇................................................................. 9 

第 2 章 高等数学基础 ................. 10 

2.1 函数.......................................... 11 

2.2 极限..........................................13 

2.3 无穷小与无穷大...........................17 

2.4 连续性与导数..............................19 

2.5 偏导数...................................... 24 

2.6 方向导数................................... 27 

2.7 梯度......................................... 29 

2.8 综合实例―梯度下降法求函数的最小值.......................................31 

2.9 高手点拨................................... 35 

2.10 习题....................................... 38 

第 3 章 微积分..............................39 

3.1 微积分的基本思想 ....................... 40 

3.2 微积分的解释..............................41 

3.3 定积分...................................... 42 

3.4 定积分的性质............................. 44 

3.5 牛顿―莱布尼茨公式.................... 45 

3.6 综合实例―Python 中常用的定积分求解方法................................... 49 

3.7 高手点拨....................................51 

3.8 习题 ........................................ 52 

第 4 章 泰勒公式与拉格朗日乘子法..............................53 

4.1 泰勒公式出发点.......................... 54 

4.2 一点一世界................................ 54 

4.3 阶数和阶乘的作用....................... 59 

4.4 麦克劳林展开式的应用..................61 

4.5 拉格朗日乘子法.......................... 63 

4.6 求解拉格朗日乘子法.................... 64 

4.7 综合实例―编程模拟实现 sinx 的n 阶泰勒多项式并验证结果.................. 67 

4.8 高手点拨 ................................... 68 

4.9 习题 ......................................... 68 

第2 篇 

核心篇............................................................... 69 

第 5 章 将研究对象形式化―线性代数基础 ..........................70 

5.1 向量..........................................71 

5.2 矩阵......................................... 73 

5.3 矩阵和向量的创建....................... 77 

5.4 特殊的矩阵................................ 85 

5.5 矩阵基本操作..............................91 

5.6 转置矩阵和逆矩阵....................... 96 

5.7 行列式..................................... 101 

5.8 矩阵的秩..................................104 

5.9 内积与正交...............................108 

5.10 综合实例―线性代数在实际问题中的应用 ....................................... 114 

5.11 高手点拨 ................................ 121 

5.12 习题......................................126 

第 6 章 从数据中提取重要信息―特征值与矩阵分解..........127 

6.1 特征值与特征向量 .....................128 

6.2 特征空间..................................133 

6.3 特征值分解...............................133 

6.4 SVD 解决的问题.......................135 

6.5 奇异值分解(SVD)..................136 

6.6 综合实例 1―利用 SVD 对图像进行压缩 .......................................140 

6.7 综合实例 2―利用 SVD 推荐商品 .......................................143 

6.8 高手点拨..................................150 

6.9 习题 .......................................154 

第 7 章 描述统计规律 1―概率论基础................................155 

7.1 随机事件及其概率 ......................156 

7.2 条件概率.................................. 161 

7.3 独立性.....................................162 

7.4 随机变量..................................165 

7.5 二维随机变量............................173 

7.6 边缘分布..................................177 

7.7 综合实例―概率的应用.............180 

7.8 高手点拨.................................. 181 

7.9 习题........................................184 

第 8 章 描述统计规律 2―随机变量与概率估计........................185 

8.1 随机变量的数字特征 ..................186 

8.2 大数定律和中心极限定理.............193 

8.3 数理统计基本概念......................199 

8.4 最大似然估计........................... 203 

8.5 最大后验估计........................... 206 

8.6 综合实例 1―贝叶斯用户满意度预测 ...................................... 209 

8.7 综合实例 2―最大似然法求解模型参数 .......................................217 

8.8 高手点拨 ................................ 222 

8.9 习题 ....................................... 224 

第 3 篇 

提高篇............................................................. 225 

第 9 章 随机变量的几种分布...... 226 

9.1 正态分布 ................................ 227 

9.2 二项分布................................. 240 

9.3 泊松分布................................. 250 

9.4 均匀分布..................................261 

9.5 卡方分布................................. 266 

9.6 Beta 分布 .............................. 273 

9.7 综合实例―估算棒球运动员的击中率 ...................................... 283 

9.8 高手点拨 ................................ 285 

9.9 习题 ...................................... 286 

第 10 章 数据的空间变换―核函数变换............................. 287 

10.1 相关知识简介 ......................... 288 

10.2 核函数的引入 ......................... 290 

10.3 核函数实例............................ 290 

10.4 常用核函数.............................291 

10.5 核函数的选择......................... 294 

10.6 SVM 原理 ............................ 295 

10.7 非线性 SVM 与核函数的引入.... 305 

10.8 综合实例―利用 SVM 构建分类 

问题......................................310 

10.9 高手点拨................................315 

10.10 习题 ................................... 322 

第 11 章 熵与激活函数 .............. 323 

11.1 熵和信息熵............................ 324 

11.2 激活函数 ............................... 328 

11.3 综合案例―分类算法中信息熵的应用...................................... 339 

11.4 高手点拨 ................................341 

11.5 习题 ..................................... 342 

第4 篇 

应用篇............................................................. 333 

第 12 章 假设检验 ..................... 344 

12.1 假设检验的基本概念................. 345 

12.2 Z 检验 ...................................351 

12.3 t 检验 ................................... 353 

12.4 卡方检验............................... 358 

12.5 假设检验中的两类错误 ..............361 

12.6 综合实例 1―体检数据中的假设检验问题..................................... 363 

12.7 综合实例 2―种族对求职是否有影响..................................... 369 

12.8 高手点拨............................... 372 

12.9 习题..................................... 374 

13 章 相关分析...................... 375 

13.1 相关分析概述.......................... 376 

13.2 皮尔森相关系数....................... 378 

13.3 相关系数的计算与假设检验........ 379 

13.4 斯皮尔曼等级相关.................... 385 

13.5 肯德尔系数............................. 392 

13.6 质量相关分析.......................... 396 

13.7 品质相关分析.......................... 400 

13.8 偏相关与复相关....................... 403 

13.9 综合实例―相关系数计算........ 405 

13.10 高手点拨.............................. 407 

13.11 习题..................................... 408 

第 14 章 回归分析......................409 

14.1 回归分析概述...........................410 

14.2 回归方程推导及应用..................412 

14.3 回归直线拟合优度.....................416 

14.4 线性回归的模型检验..................417 

14.5 利用回归直线进行估计和预测......419 

14.6 多元与曲线回归问题..................421 

14.7 Python 工具包....................... 426 

14.8 综合实例―个人医疗保费预测任务...................................... 432 

14.9 高手点拨................................ 444 

14.10 习题..................................... 446 

第 15 章 方差分析......................449 

15.1 方差分析概述.......................... 448 

15.2 方差的比较............................. 450 

15.3 方差分析.................................451 

15.4 综合实例―连锁餐饮用户评级分析...................................... 460 

15.5 高手点拨................................ 464 

15.6 习题...................................... 466 

第 16 章 聚类分析......................469 

16.1 聚类分析概述.......................... 468 

16.2 层次聚类................................ 470 

16.3 K-Means 聚类...................... 484 

16.4 DBSCAN 聚类....................... 494 

16.5 综合实例―聚类分析.............. 499 

16.6 高手点拨.................................512 

16.7 习题.......................................512 

第 17 章 贝叶斯分析....................513 

17.1 贝叶斯分析概述........................514 

17.2 MCMC 概述.......................... 520 

17.3 MCMC 采样 ......................... 525 

17.4 Gibbs 采样........................... 529 

17.5 综合实例―利用 PyMC3 实现随机模拟样本分布......................... 532 

17.6 高手点拨............................... 539 

17.7 习题..................................... 540
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP