• 大话数据科学—大数据与机器学习实战
21年品牌 40万+商家 超1.5亿件商品

大话数据科学—大数据与机器学习实战

728 128 九五品

仅1件

北京通州
认证卖家担保交易快速发货售后保障

作者陈文贤

出版社清华大学出版社

ISBN9787302551300

出版时间2020-07

版次1

装帧平装

开本16开

纸张胶版纸

定价128元

上书时间2024-12-14

纵列風

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九五品
商品描述
基本信息
书名:大话数据科学—大数据与机器学习实战
定价:128.00元
作者:陈文贤
出版社:清华大学出版社
出版日期:2020-07-01
ISBN:9787302551300
字数:
页码:
版次:
装帧:平装
开本:16开
商品重量:
编辑推荐
数据科学作为一门新兴的学科,正在高速发展并落地应用。当前的各行各业都充满了数据,这些数据的类型多种多样,不仅包括传统的结构化数据,也包括网页、文本、图像、视频、语音等非结构化数据。数据科学涵盖的体系甚广,对某一领域进行数据科学研究,首先要研究该领域(比如生物信息学、天体信息学、数字地球等)的特性,然后通过包括统计学、机器学习、数据挖掘、数据库等技术从中分析出需要的结果。这些学科都是数据科学的重要组成部分,只有把它们有机地整合在一起,才能形成整个数据科学的全貌。陈文贤老师作为数据科学的早期探索者,积累了大量科研经验,更为难得的是,陈老师擅用与科班教材截然不同的方式把包罗万象的数据科学细节逐步分解,娓娓道来,再用多年积累的实际案例把理论串联起来,从中再佐以大家耳熟能详的案例(如武侠场景、生活场景),把艰深晦涩、逻辑复杂的问题剖析地如水银泻地般流畅。由于数据科学的特性,我们在策划阶段便确认彩色印刷,以便可以更精准地讲解和分析各种图表和代码。另外,陈老师针对全书脉络,每章都提供了学习地图,确保读者学习过程中不会迷失。
内容提要
本书以独特的方式讲解数据科学,不仅让读者可以轻松学习数据科学理论,又可以动手(手算和机算)进行数据科学实战。本书特色:全彩印刷,图形、表格、思维导图丰富;避免深奥的数学证明,采用简单的数学说明;用各种学习图将本书内容贯穿起来;实战计算,包含小型数据的演算和大型数据的实战程序。 本书共13章,内容涵盖丰富的数据科学模型,包含关联分析、聚类分析、贝叶斯分类、近邻法、决策树、降维分析、回归模型等算法。利用小数据例题介绍计算步骤,同时用R语言验证计算结果。另外,也有大数据的案例数据,例如:推荐系统、支持向量机、集成学习等。另外,本书只有大数据的案例数据用R语言计算。 本书适合各个专业领域(包含金融、电商、保险、互联网等行业)想掌握数据科学的读者,也可以作为高校、社会培训机构教材。由于内容比较多,教师可自行选择教学内容。
目录
篇 基础篇章 大数据概述 31.1 大数据与相关学科的定义 41.1.1 大数据的定义 41.1.2 数据挖掘 61.1.3 数据挖掘标准过程 71.1.4 机器学习 91.1.5 知识管理 121.1.6 数据科学 141.1.7 商业智能 151.1.8 人工智能 171.1.9 统计学与大数据比较 191.1.10 数据名词的定义 211.2 系统与模型概念 221.2.1 系统定义与成分 221.2.2 输入,处理,输出与黑箱 231.2.3 环境 241.2.4 反馈 251.2.5 效率与效果 251.2.6 模型与建模 261.2.7 模型的假定与参数 271.2.8 敏感,稳健或鲁棒 281.2.9 模型的过拟合 281.3 大数据分析模型的分类 301.3.1 后设模型 301.3.2 关系与因果 311.3.3 基于因果关系的统计学分类 321.3.4 基于因果关系的大数据分类 321.3.5 基于数据类型的分类 341.3.6 基于测量的分类 351.3.7 数据科学模型的其他分类 361.4 大数据的江湖传奇 361.5 R语言“词云图”代码 401.6 本章思维导图 42第2 章 大数据与R 语言 432.1 大数据进位 442.2 R语言介绍 452.2.1 安装 R 语言软件 452.2.2 下载R语言程序包 452.3 R数据对象的属性与结构 462.3.1 数值 472.3.2 整数 472.3.3 字符串 472.3.4 逻辑 472.3.5 向量 482.3.6 因子 492.3.7 矩阵 502.3.8 数据框 522.3.9 数组 522.3.10 列表 532.3.11 时间序列 542.3.12 访问数据类型和结构 542.3.13 遗失值 552.3.14 读入Excel CSV数据 552.3.15 编辑数据 552.3.16 保存Excel CSV数据 552.3.17 数据输入窗口 562.3.18 R 的数据结构和函数表 562.4 R的函数包 562.5 R的数据绘图 592.6 本章思维导图 64第二篇 非监督式学习第3 章 关联分析 673.1 关联分析介绍 683.1.1 事务与项目的定义 683.1.2 项集的关联规则 693.2 关联规则数据格式 713.3 关联规则的算法 723.3.1 Apriori算法 733.3.2 关联规则其他测度值 743.3.3 负关联规则 753.4 关联规则的优点和缺点 763.4.1 Apriori算法的优点 763.4.2 Apriori算法的缺点 763.4.3 关联规则的评估 763.5 关联规则的实例计算 773.5.1 尿布与啤酒 773.5.2 豆浆、烧饼与饭团 793.5.3 评估与应用 823.6 R语言实战 823.6.1 泰坦尼克号 823.6.2 商店数据 863.6.3 食品杂货数据 903.6.4 人口收入数据 923.6.5 鸢尾花数据 933.7 本章思维导图 96第4 章 聚类分析 974.1 聚类分析介绍 984.2 距离与相似度衡量 994.2.1 数值数据距离 994.2.2 标准化与归一化 1004.2.3 0-1数据距离和相似度 1004.2.4 混合数据的距离 1024.2.5 顾客数据的距离 1024.2.6 距离和相似度的转换 1044.2.7 计算距离的R函数 1044.3 层次聚类分析 1064.3.1 两类连接 1064.3.2 顾客数据的聚类 1074.3.3 层次聚类的优点和缺点 1104.4 非层次聚类分析 1104.4.1 K-mean聚类 1104.4.2 PAM 聚类 1124.4.3 K-mean聚类的优点和缺点 1134.5 聚类分析的评价 1134.6 R语言实战 1154.6.1 欧洲语言的聚类 1154.6.2 美国电力公司数据 1184.6.3 欧州人蛋白质数据 1204.6.4 红酒数据 1244.6.5 汽车数据 1264.7 本章思维导图 128第5 章 降维分析 1295.1 降维分析介绍 1305.2 主成分分析 1315.2.1 主成分分析的计算理论 1325.2.2 主成分分析的计算步骤 1345.2.3 主成分分析的优点和缺点 1345.3 R语言程序 1355.4 R语言实战 1385.4.1 鸢尾花数据 1385.4.2 美国罪犯数据 1385.4.3 美国法官数据 1455.4.4 国家冰球联盟资料 1465.4.5 美国职业棒球数据 1495.4.6 早餐麦片数据 1515.4.7 红酒数据 1515.4.8 心理学数据 1525.5 本章思维导图 154第三篇 监督式学习第6 章 模型选择与评价 1576.1 模型选择与评价步骤 1586.2 大数据的抽样方法 1596.2.1 保留方法抽样 1606.2.2 自助抽样法 1626.2.3 632自助法 1636.2.4 过采样 1646.3 交叉验证 1656.3.1 k-折交叉验证 1656.3.2 留一交叉验证 1666.4 模型选择 1676.4.1 参数和非参数学习 1686.4.2 偏差和方差 1696.4.3 模型的复杂度 1706.4.4 正则化 1716.4.5 认真学习和懒惰学习 1716.5 模型评价 1726.5.1 二元0-1分类器的评价——混淆矩阵 1726.5.2 混淆矩阵的举例说明 1746.5.3 二元分类器的成本计算 1766.5.4 二元分类器例题数据R语言 1766.5.5 多标签分类器的评价 1796.5.6 多标签分类器评价R 语言 1816.5.7 交叉验证分类的评价 1836.5.8 分类学习的ROC曲线 1836.5.9 连续型目标变量回归模型的评价 1876.6 R语言实战 1896.6.1 R语言自动调模与调参 1896.6.2 汽车数据 1906.6.3 乳腺癌诊断数据 1906.7 本章思维导图 192第7 章 回归分析 1937.1 多元线性回归 1947.1.1 多元线性回归模型 1947.1.2 参数估计 1957.1.3 适合性检验 1967.1.4 实例计算 1977.1.5 R语言的实例计算 1997.2 变量(特征)选择 2007.2.1 偏相关系数 2007.2.2 逐步回归 2037.2.3 部分子集回归 2047.2.4 压缩方法 2057.3 Logistic逻辑回归 2077.4 R语言实战 2097.4.1 股票数据 2097.4.2 乳腺癌病理数据 2107.4.3 医疗保险数据 2137.4.4 棒球数据 2157.4.5 波士顿房价数据 2187.4.6 皮玛数据 2217.5 本章思维导图 224第8 章 近邻法 2258.1 学习器 2268.1.1 认真学习器和懒惰学习器 2268.1.2 基于实例学习器 2278.1.3 参数学习器和非参数学习器 2288.2 近邻法介绍 2298.2.1 k-近邻法算法步骤 2298.2.2 k-近邻法分类器 2308.2.3 k-近邻法回归 2318.2.4 自变量是分类变量 2328.3 近邻法的优点和缺点 2328.4 R语言实战 2338.4.1 食材数据 2338.4.2 鸢尾花数据 2348.4.3 乳癌检查数据 2368.4.4 美国总统候选人数据 2388.4.5 玻璃数据 2408.4.6 波士顿房价数据 2418.4.7 皮玛数据 2428.5 本章思维导图 244第9 章 贝叶斯分类 2459.1 贝叶斯公式 2469.2 贝叶斯分类 2479.2.1 朴素贝叶斯分类 2479.2.2 特征值是连续变量 2489.2.3 朴素贝叶斯分类的优点和缺点 2499.3 贝叶斯分类的实例计算 2499.3.1 天气和打网球 2499.3.2 验前概率与似然概率 2519.3.3 拉普拉斯校准 2519.3.4 R 语言实例计算 2529.4 R语言实战 2559.4.1 泰坦尼克号数据 2559.4.2 鸢尾花数据 2569.4.3 垃圾邮件数据 2589.4.4 皮玛数据 2619.5 本章思维导图 2620 章 决策树 26310.1 决策树概述 26410.1.1 图形表示 26410.1.2 逻辑表示 26510.1.3 规则表示 26510.1.4 数学公式表示 26510.2 决策树的信息计算 26610.2.1 信息计算 26610.2.2 熵与信息 26710.2.3 信息增益 26710.2.4 信息增益比 26810.2.5 基尼系数与基尼增益 26810.2.6 卡方统计量 26910.2.7 分枝法则的选择 26910.2.8 回归树 26910.3 决策树的实例计算 27010.4 决策树的剪枝 27710.4.1 贪婪算法 27710.4.2 决策树剪枝 27810.5 决策树的优点和缺点 27910.6 R语言实战 28010.6.1 决策树R语言包 28010.6.2 打网球数据 28010.6.3 泰坦尼克号数据 28310.6.4 鸢尾花数据 28410.6.5 皮玛数据 28910.6.6 汽车座椅销售数据 29210.6.7 波士顿房价数据 29510.6.8 猫数据 29710.6.9 驼背数据 30010.6.10 美国总统选举投票数据 30110.6.11 员工离职数据 30210.7 本章思维导图 3061 章 支持向量机 30711.1 支持向量机概述 30811.2 间隔分类(硬间隔) 31011.3 支持向量分类(软间隔) 31111.4 支持向量机(核函数) 31311.4.1 支持向量机的核函数 31311.4.2 多元分类支持向量机 31511.5 支持向量机的优点和缺点 31511.6 支持向量机R语言应用 31611.6.1 随机正态分布数据线性核函数 31711.6.2 随机正态分布数据径向基核函数 31811.6.3 三分类数据径向基核函数 32111.7 R语言实战 32211.7.1 基因表达数据 32211.7.2 鸢尾花数据 32211.7.3 猫数据 32311.7.4 皮玛数据 32511.7.5 字符数据 32811.7.6 玻璃数据 32911.8 本章思维导图 3322 章 集成学习 33312.1 集成学习介绍 33412.2 个别分类方法评价 33512.3 Bagging学习 33712.4 随机森林 33812.4.1 随机森林介绍 33812.4.2 随机森林算法步骤 33912.4.3 R 语言 33912.4.4 随机森林的优点和缺点 34012.4.5 非监督式学习-鸢尾花数据 34012.4.6 美国大学数据 34112.5 Boosting学习 34212.6 Stacking学习 34312.6.1 皮玛数据 34312.6.2 员工离职数据 34412.7 R语言实战 34512.7.1 红酒数据 34512.7.2 信用数据 34712.7.3 皮玛数据 34812.7.4 波士顿房价数据 34912.7.5 汽车座椅数据 35212.7.6 顾客流失数据 35312.8 本章思维导图 3563 章 推荐系统 35713.1 推荐系统概述 35813.2 过滤推荐 35913.2.1 相似度 36013.2.2 基于用户的协同过滤 36013.2.3 基于项目的协同过滤 36113.2.4 协同过滤的评价 36213.2.5 协同过滤的优点和缺点 36313.2.6 混合的推荐机制 36413.3 R语言应用 36513.3.1 推荐系统R语言包 36513.3.2 recommenderlab 函数程序 36613.3.3 模拟数据 36713.4 R语言实战 36913.4.1 电影数据 36913.4.2 笑话数据 37313.5 本章思维导图 378结语 379参考文献 381
作者介绍
陈文贤,美国加州大学伯克利分校工业工程博士,历任:台大信息管理系教授兼系主任、美国雪城Syracuse大学客座教授、澳大利亚悉尼科技大学UTS客座教授、台北德明财经科技大学信息管理系特聘教授。
序言

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP