• 积分几何与几何概率(英文版)
  • 积分几何与几何概率(英文版)
  • 积分几何与几何概率(英文版)
  • 积分几何与几何概率(英文版)
  • 积分几何与几何概率(英文版)
  • 积分几何与几何概率(英文版)
  • 积分几何与几何概率(英文版)
  • 积分几何与几何概率(英文版)
  • 积分几何与几何概率(英文版)
  • 积分几何与几何概率(英文版)
21年品牌 40万+商家 超1.5亿件商品

积分几何与几何概率(英文版)

20 4.1折 49 九品

仅1件

江苏南京
认证卖家担保交易快速发货售后保障

作者[阿根廷]路易斯桑塔洛 著

出版社世界图书出版公司

出版时间2009-05

版次1

装帧平装

货号A53

上书时间2025-01-02

南京双泽书店

已实名 进店 收藏店铺

   商品详情   

品相描述:九品
图书标准信息
  • 作者 [阿根廷]路易斯桑塔洛 著
  • 出版社 世界图书出版公司
  • 出版时间 2009-05
  • 版次 1
  • ISBN 9787510004933
  • 定价 49.00元
  • 装帧 平装
  • 开本 24开
  • 纸张 胶版纸
  • 页数 404页
  • 正文语种 英语
【内容简介】
Thoughitstitle"IntegralGeometry"mayappearsomewhatunusualinthiscontextitisneverthelessquiteappropriate,forIntegralGeometryisanoutgrowthofwhatintheoldendayswasreferredtoas"geometricprobabil-ities."
Originating,aslegendhasit,withtheBuffonneedleproblem(whichafternearlytwocenturieshaslostlittleofitseleganceandappeal),geometricprobabilitieshaverunintodifficultiesculminatingintheparadoxesofBertrandwhichthreatenedthefledglingfieldwithbanishmentfromthehomeofMathematics.Inrescuingitfromthisfate,Poincar6madethesuggestionthatthearbitrarinessofdefinitionunderlyingtheparadoxescouldberemovedbytyingcloserthedefinitionofprobabilitywithageometricgroupofwhichitwouldhavetobeaninvariant.
【目录】
EditorsStatement
Foreword
Preface
Chapter1.ConvexSetsinthePlane
1.Introduction
2.EnvelopeofaFamilyofLines
3.MixedAreasofMinkowski
4.SomeSpecialConvexSets
5.SurfaceAreaoftheUnitSphereandVolumeoftheUnitBall
6.NotesandExercises

Chapter2.SetsofPointsandPoissonProcessesinthePlane
1.DensityforSetsofPoints
2.FirstIntegralFormulas
3.SetsofTriplesofPoints
4.HomogeneousPlanarPoissonPointProcesses
5.Notes

Chapter3.SetsofLinesinthePlane
1.DensityforSetsofLines
2.LinesThatIntersectaConvexSetoraCurve
3.LinesThatCutorSeparateTwoConvexSets
4.GeometricApplications
5.NotesandExercises
Chapter4.PairsofPointsandPairsofLines
1.DensityforPairsofPoints
2.IntegralsforthePoweroftheChordsofaConvexSet.
3.DensityforPairsofLines
4.DivisionofthePlanebyRandomLines
5.Notes

Chapter5.SetsofStripsinthePlane
1.DensityforSetsofStrips
2.BuffonsNeedleProblem
3.SetsofPoints,Lines,andStrips
4.SomeMeanValues
5.Notes

Chapter6.TheGroupofMotionsinthePlane:KinematicDensity.
1.TheGroupofMotionsinthePlane
2.TheDifferentialFormson9Jl
3.TheKinematicDensity
4.SetsofSegments
5.ConvexSetsThatIntersectAnotherConvexSet
6.SomeIntegralFormulas
7.AMeanValue;CoverageProblems
8.NotesandExercises

Chapter7.FundamentalFormulasofPoinear~andBlaschke
1.ANewExpressionfortheKinematicDensity
2.Poincar6sFormula
3.TotalCurvatureofaClosedCurveandofaPlaneDomain
4.FundamentalFormulaofBlaschke
5.ThelsoperimetricInequality.
6.HadwigersConditionsforaDomaintoBeAbletoContainAnother
7.Notes

Chapter8.LatticesofFigures
1.DefinitionsandFundamentalFormula
2.LatticesofDomains
3.LatticesofCurves
4.LatticesOfPoints
5.NotesandExercise

Chapter9.DifferentialFormsandLieGroups
1.DifferentialForms
2.PfaffianDifferentialSystems
3.MappingsofDifferentiableManifolds
4.LieGroups;LeftandRightTranslations
5.Left-lnvariantDifferentialForms
6.Maurer-CartanEquations
7.lnvariantVolumeElementsofaGroup:UnimodularGroups
8.NotesandExercises

Chapter10.DensityandMeasureinHomogeneousSpaces
1.Introduction
2.invariantSubgroupsandQuotientGroups
3.OtherConditionsfortheExistenceofaDensityonHomo-geneousSpaces
4.Examples
5.LieTransformationGroups
6.NotesandExercises

Chapter11.TheAffineGroups
1.TheGroupsofAffineTransformations
2.DensitiesforLinearSpaceswithRespecttoSpecialHomo-geneousAffinities
3.DensitiesforLinearSubspaceswithRespecttotheSpecialNonhomogeneousAffineGroup
4.NotesandExercises

Chapter12.TheGroupofMotionsinE,
1.Introduction
2.DensitiesforLinearSpacesinE
3.ADifferentialFormula
4.Densityforr-PlanesaboutaFixedq-Plane
5.AnotherFormoftheDensityforr-Planesin
6.SetsofPairsofLinearSpaces
7.Notes

Chapter13.ConvexSetsin
1.ConvexSetsandQuermassintegrale
2.CauchysFormula
3.ParallelConvexSets;SteinersFormula
4.IntegralFormulasRelatingtotheProjectionsofaConvexSetonLinearSubspaces
5.IntegralsofMeanCurvature
6.IntegralsofMeanCurvatureandQuermassintegrale.
7.IntegralsofMeanCurvatureofaFlattenedConvexBody
8.Notes

Chapter14.LinearSubspaces,ConvexSets,andCompactManifolds
1.Setsofr-PlanesThatIntersectaConvexSet
2.GeometricProbabilities
3.CroftonsFormulasinEn
4.SomeRelationsbetweenDensitiesofLinearSubspaces
5.LinearSubspacesThatIntersectaManifold
6.HypersurfacesandLinearSpaces
7.Notes

Chapter15.TheKinematicDensityinE
1.FormulasonDensities
2.IntegraloftheVolume
3.ADifferentialFormula
4.TheKinematicFundamentalFormula
5.FundamentalFormulaforConvexSets
6.MeanValuesfortheIntegralsofMeanCurvature
7.FundamentalFormulaforCylinders
8.SomeMeanValues
9.LatticesinEn.
10.NotesandExercise

Chapter16.GeometricandStatisticalApplications;Stereology
1.SizeDistributionofParticlesDerivedfromtheSizeDistributionofTheirSections
2.IntersectionwithRandomPlanes
3.IntersectionwithRandomLines
4.Notes

Chapter17.NoneuclideanIntegralGeometry
1.Then-DimensionalNoneuclideanSpace
2.TheGauss-BonnetFormulaforNoneuclideanSpaces
3.KinematicDensityandDensityforr-Planes
4.Setsofr-PlanesThatMeetaFixedBody
5.Notes

Chapter18.CroftonsFormulasandtheKinematicFundamentalFormula
inNoneuclideanSpaces
1.CroftonsFormulas
2.DualFormulasinEllipticSpace
3.TheKinematicFundamentalFormulainNoneuclidean
Spaces
4.SteinersFormulainNoneuclideanSpaces
5.AnIntegralFormulaforConvexBodiesinEllipticSpace
6.Notes
Chapter19.IntegralGeometryandFoliatedSpaces;TrendsinIntegralGeometry
1.FoliatedSpaces
2.SetsofGeodesicsinaRiemannManifold
3.MeasureofTwo-DimensionalSetsofGeodesics
4.Measureof(2n-2)-DimensionalSetsofGeodesics
5.SetsofGeodesicSegments
6.IntegralGeometryonComplexSpaces
7.SymplecticIntegralGeometry
8.TheIntegralGeometryofGelfand
9.Notes
Appendix.DifferentialFormsandExteriorCalculus
1.DifferentialFormsandExteriorProduct
2.TwoApplicationsoftheExteriorProduct
3.ExteriorDifferentiation
4.StokesFormula
5.ComparisonwithVectorCalculusinEuclideanThree-DimensionalSpace
6.DifferentialFormsoverManifolds
BibliographyandReferences
AuthorIndex
SubiectIndex
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP