积分几何与几何概率(英文版)
¥
20
4.1折
¥
49
九品
仅1件
作者[阿根廷]路易斯桑塔洛 著
出版社世界图书出版公司
出版时间2009-05
版次1
装帧平装
货号A53
上书时间2025-01-02
商品详情
- 品相描述:九品
图书标准信息
-
作者
[阿根廷]路易斯桑塔洛 著
-
出版社
世界图书出版公司
-
出版时间
2009-05
-
版次
1
-
ISBN
9787510004933
-
定价
49.00元
-
装帧
平装
-
开本
24开
-
纸张
胶版纸
-
页数
404页
-
正文语种
英语
- 【内容简介】
-
Thoughitstitle"IntegralGeometry"mayappearsomewhatunusualinthiscontextitisneverthelessquiteappropriate,forIntegralGeometryisanoutgrowthofwhatintheoldendayswasreferredtoas"geometricprobabil-ities."
Originating,aslegendhasit,withtheBuffonneedleproblem(whichafternearlytwocenturieshaslostlittleofitseleganceandappeal),geometricprobabilitieshaverunintodifficultiesculminatingintheparadoxesofBertrandwhichthreatenedthefledglingfieldwithbanishmentfromthehomeofMathematics.Inrescuingitfromthisfate,Poincar6madethesuggestionthatthearbitrarinessofdefinitionunderlyingtheparadoxescouldberemovedbytyingcloserthedefinitionofprobabilitywithageometricgroupofwhichitwouldhavetobeaninvariant.
- 【目录】
-
EditorsStatement
Foreword
Preface
Chapter1.ConvexSetsinthePlane
1.Introduction
2.EnvelopeofaFamilyofLines
3.MixedAreasofMinkowski
4.SomeSpecialConvexSets
5.SurfaceAreaoftheUnitSphereandVolumeoftheUnitBall
6.NotesandExercises
Chapter2.SetsofPointsandPoissonProcessesinthePlane
1.DensityforSetsofPoints
2.FirstIntegralFormulas
3.SetsofTriplesofPoints
4.HomogeneousPlanarPoissonPointProcesses
5.Notes
Chapter3.SetsofLinesinthePlane
1.DensityforSetsofLines
2.LinesThatIntersectaConvexSetoraCurve
3.LinesThatCutorSeparateTwoConvexSets
4.GeometricApplications
5.NotesandExercises
Chapter4.PairsofPointsandPairsofLines
1.DensityforPairsofPoints
2.IntegralsforthePoweroftheChordsofaConvexSet.
3.DensityforPairsofLines
4.DivisionofthePlanebyRandomLines
5.Notes
Chapter5.SetsofStripsinthePlane
1.DensityforSetsofStrips
2.BuffonsNeedleProblem
3.SetsofPoints,Lines,andStrips
4.SomeMeanValues
5.Notes
Chapter6.TheGroupofMotionsinthePlane:KinematicDensity.
1.TheGroupofMotionsinthePlane
2.TheDifferentialFormson9Jl
3.TheKinematicDensity
4.SetsofSegments
5.ConvexSetsThatIntersectAnotherConvexSet
6.SomeIntegralFormulas
7.AMeanValue;CoverageProblems
8.NotesandExercises
Chapter7.FundamentalFormulasofPoinear~andBlaschke
1.ANewExpressionfortheKinematicDensity
2.Poincar6sFormula
3.TotalCurvatureofaClosedCurveandofaPlaneDomain
4.FundamentalFormulaofBlaschke
5.ThelsoperimetricInequality.
6.HadwigersConditionsforaDomaintoBeAbletoContainAnother
7.Notes
Chapter8.LatticesofFigures
1.DefinitionsandFundamentalFormula
2.LatticesofDomains
3.LatticesofCurves
4.LatticesOfPoints
5.NotesandExercise
Chapter9.DifferentialFormsandLieGroups
1.DifferentialForms
2.PfaffianDifferentialSystems
3.MappingsofDifferentiableManifolds
4.LieGroups;LeftandRightTranslations
5.Left-lnvariantDifferentialForms
6.Maurer-CartanEquations
7.lnvariantVolumeElementsofaGroup:UnimodularGroups
8.NotesandExercises
Chapter10.DensityandMeasureinHomogeneousSpaces
1.Introduction
2.invariantSubgroupsandQuotientGroups
3.OtherConditionsfortheExistenceofaDensityonHomo-geneousSpaces
4.Examples
5.LieTransformationGroups
6.NotesandExercises
Chapter11.TheAffineGroups
1.TheGroupsofAffineTransformations
2.DensitiesforLinearSpaceswithRespecttoSpecialHomo-geneousAffinities
3.DensitiesforLinearSubspaceswithRespecttotheSpecialNonhomogeneousAffineGroup
4.NotesandExercises
Chapter12.TheGroupofMotionsinE,
1.Introduction
2.DensitiesforLinearSpacesinE
3.ADifferentialFormula
4.Densityforr-PlanesaboutaFixedq-Plane
5.AnotherFormoftheDensityforr-Planesin
6.SetsofPairsofLinearSpaces
7.Notes
Chapter13.ConvexSetsin
1.ConvexSetsandQuermassintegrale
2.CauchysFormula
3.ParallelConvexSets;SteinersFormula
4.IntegralFormulasRelatingtotheProjectionsofaConvexSetonLinearSubspaces
5.IntegralsofMeanCurvature
6.IntegralsofMeanCurvatureandQuermassintegrale.
7.IntegralsofMeanCurvatureofaFlattenedConvexBody
8.Notes
Chapter14.LinearSubspaces,ConvexSets,andCompactManifolds
1.Setsofr-PlanesThatIntersectaConvexSet
2.GeometricProbabilities
3.CroftonsFormulasinEn
4.SomeRelationsbetweenDensitiesofLinearSubspaces
5.LinearSubspacesThatIntersectaManifold
6.HypersurfacesandLinearSpaces
7.Notes
Chapter15.TheKinematicDensityinE
1.FormulasonDensities
2.IntegraloftheVolume
3.ADifferentialFormula
4.TheKinematicFundamentalFormula
5.FundamentalFormulaforConvexSets
6.MeanValuesfortheIntegralsofMeanCurvature
7.FundamentalFormulaforCylinders
8.SomeMeanValues
9.LatticesinEn.
10.NotesandExercise
Chapter16.GeometricandStatisticalApplications;Stereology
1.SizeDistributionofParticlesDerivedfromtheSizeDistributionofTheirSections
2.IntersectionwithRandomPlanes
3.IntersectionwithRandomLines
4.Notes
Chapter17.NoneuclideanIntegralGeometry
1.Then-DimensionalNoneuclideanSpace
2.TheGauss-BonnetFormulaforNoneuclideanSpaces
3.KinematicDensityandDensityforr-Planes
4.Setsofr-PlanesThatMeetaFixedBody
5.Notes
Chapter18.CroftonsFormulasandtheKinematicFundamentalFormula
inNoneuclideanSpaces
1.CroftonsFormulas
2.DualFormulasinEllipticSpace
3.TheKinematicFundamentalFormulainNoneuclidean
Spaces
4.SteinersFormulainNoneuclideanSpaces
5.AnIntegralFormulaforConvexBodiesinEllipticSpace
6.Notes
Chapter19.IntegralGeometryandFoliatedSpaces;TrendsinIntegralGeometry
1.FoliatedSpaces
2.SetsofGeodesicsinaRiemannManifold
3.MeasureofTwo-DimensionalSetsofGeodesics
4.Measureof(2n-2)-DimensionalSetsofGeodesics
5.SetsofGeodesicSegments
6.IntegralGeometryonComplexSpaces
7.SymplecticIntegralGeometry
8.TheIntegralGeometryofGelfand
9.Notes
Appendix.DifferentialFormsandExteriorCalculus
1.DifferentialFormsandExteriorProduct
2.TwoApplicationsoftheExteriorProduct
3.ExteriorDifferentiation
4.StokesFormula
5.ComparisonwithVectorCalculusinEuclideanThree-DimensionalSpace
6.DifferentialFormsoverManifolds
BibliographyandReferences
AuthorIndex
SubiectIndex
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价