• 工程软件应用精解:MATLAB小波分析超级学习手册
  • 工程软件应用精解:MATLAB小波分析超级学习手册
  • 工程软件应用精解:MATLAB小波分析超级学习手册
  • 工程软件应用精解:MATLAB小波分析超级学习手册
  • 工程软件应用精解:MATLAB小波分析超级学习手册
  • 工程软件应用精解:MATLAB小波分析超级学习手册
  • 工程软件应用精解:MATLAB小波分析超级学习手册
21年品牌 40万+商家 超1.5亿件商品

工程软件应用精解:MATLAB小波分析超级学习手册

内页干净如图所示

12 1.7折 69 八五品

仅1件

山东济南
认证卖家担保交易快速发货售后保障

作者孔玲军 著

出版社人民邮电出版社

出版时间2014-05

版次1

装帧平装

货号7

上书时间2025-01-03

渊书阁

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:八五品
图书标准信息
  • 作者 孔玲军 著
  • 出版社 人民邮电出版社
  • 出版时间 2014-05
  • 版次 1
  • ISBN 9787115347893
  • 定价 69.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 478页
  • 字数 732千字
  • 正文语种 简体中文
  • 丛书 工程软件应用精解
【内容简介】
  《MATLAB小波分析超级学习手册》对小波分析在MATLAB中的应用进行了详细的介绍,全书以小波为主题展开叙述,不仅对小波理论有详细的介绍,而且将理论与实际相结合,列举了数百个利用小波方法来处理信息的综合算例,这些算例均可在MATLAB R2013a版本中运行。
  《MATLAB小波分析超级学习手册》共分为17章。第1、第2两章主要介绍了MATLAB的基本功能,包括MATLAB的环境、数据类型、M文件、句柄和高级用户界面GUI等。第3~8章是关于小波分析的基础知识与应用,包括傅立叶变换、连续小波变换、离散小波变换、多分辨分析、小波基和小波包及其应用。第9~17章是小波分析的应用部分,分别介绍了小波分析用于信号滤波、信号去噪、信号压缩、信号识别与检测、图像去噪、图像压缩、图像增强、图像融合、图像特征提取和样本估计。每一章都配备了大量的MATLAB实例。
  《MATLAB小波分析超级学习手册》适合学习小波分析理论和MATLAB工程实践等不同层次的读者需要,包括从事小波分析的科研工作者、小波分析爱好者、信号处理与图像处理工程师以及在校学生,同时也可作为工程技术人员自学的参考用书。
【作者简介】
  MATLAB技术联盟孔玲军,长期从事信息处理等相关工作,熟悉MATLAB等工程软件,在国内外期刊发表论文多篇。
【目录】
目 录

第1章 MATLAB基础 1
1.1 MATLAB简介 1
1.2 MATLAB组成结构 2
1.2.1 目录结构 2
1.2.2 工作环境 3
1.2.3 系统帮助 8
1.3 掌握MATLAB编程 11
1.3.1 通用命令 11
1.3.2 演示示例 12
1.3.3 编程语句 12
1.4 数据类型 15
1.4.1 整数数据类型 15
1.4.2 浮点数数据类型 18
1.4.3 字符串 19
1.4.4 逻辑运算符 23
1.4.5 单元数组类型 25
1.4.6 结构体 26
1.4.7 函数句柄 28
1.5 M文件 28
1.5.1 脚本 28
1.5.2 M函数 31
1.6 本章小结 35

第2章 MATLAB GUI基础 36
2.1 句柄简介 36
2.1.1 对象句柄 36
2.1.2 对象属性 37
2.1.3 get和set 37
2.1.4 查找对象 44
2.1.5 用鼠标选择对象 45
2.1.6 位置和单位属性 46
2.2 图形用户界面 48
2.2.1 图形用户界面简介 48
2.2.2 预定义对话框 49
2.2.3 M文件对话框 50
2.2.4 对话框小结 50
2.2.5 GUI对象层次结构 51
2.2.6 GUI创建的基本步骤 54
2.2.7 GUI对象的大小和位置 54
2.2.8 捕获鼠标动作 55
2.2.9 事件队列 57
2.2.10 回调编程 57
2.2.11 M文件示例 63
2.3 GUI设计编程 67
2.3.1 M文件以及GUI数据管理 67
2.3.2 回调函数的使用方法 69
2.3.3 图形窗口的行为控制 71
2.4 图形读者界面设计应用实例 72
2.4.1 数据相互转换 72
2.4.2 绘制数据点 76
2.5 本章小结 83

第3章 小波分析基础 84
3.1 一维傅立叶变换及其应用 84
3.1.1 一维傅立叶变换 84
3.1.2 一维离散傅立叶级数 85
3.1.3 一维离散傅立叶变换及应用 87
3.1.4 一维快速傅立叶变换及应用 88
3.2 二维傅立叶变换及其应用 90
3.3 Z变换及其应用 92
3.4 滤波器 94
3.4.1 连续滤波器 94
3.4.2 数字滤波器及其应用 94
3.4.3 滤波器设计与分析 105
3.5 本章小结 107

第4章 连续小波变换 108
4.1 小波分析简介 108
4.1.1 小波分析发展概述 108
4.1.2 小波分析优缺点 109
4.2 连续小波变换及其性质 110
4.2.1 短时傅立叶变换 110
4.2.2 一维连续小波变换 111
4.2.3 高维连续小波变换 112
4.3 连续小波变换的计算 113
4.3.1 如何计算连续小波变换 113
4.3.2 连续小波变换的应用 114
4.3.3 连续小波界面式应用实例 118
4.3.4 连续小波反变换的应用 126
4.4 本章小结 127

第5章 离散小波变换 128
5.1 离散小波变换及其逆变换 128
5.1.1 一维离散小波变换 128
5.1.2 小波框架 131
5.1.3 离散小波变换的逆变换 132
5.1.4 二进小波变换及其逆变换 133
5.2 离散小波变换的计算 136
5.2.1 离散小波变换计算过程 136
5.2.2 一维离散小波变换算法 136
5.3 离散小波变换在MATLAB中的函数及应用 139
5.3.1 一维离散小波变换函数 139
5.3.2 一维离散小波逆变换函数 142
5.3.3 二维离散小波变换函数 145
5.3.4 二维离散小波逆变换函数 148
5.4 离散小波变换界面式应用 150
5.4.1 一维离散小波界面式应用实例 150
5.4.2 二维离散小波界面式应用实例 157
5.5 离散小波变换的综合演示实例 159
5.6 本章小结 169

第6章 多分辨分析与Mallat算法 170
6.1 多分辨分析 170
6.1.1 多分辨分析理论 170
6.1.2 几种常见的正交小波基 173
6.1.3 尺度函数和小波函数性质 175
6.2 双尺度方程及多分辨滤波器组 176
6.2.1 双尺度方程 176
6.2.2 滤波器组系数h0(n)和h1(n)的性质 178
6.3 Mallat算法 179
6.3.1 一维Mallat算法 179
6.3.2 二维Mallat算法 180
6.3.3 Mallat算法在MATLAB中的实现 182
6.3.4 Mallat算法在MATLAB中的应用 185
6.4 离散序列的多分辨分析与正交小波变换 192
6.4.1 离散序列的小波分解 193
6.4.2 离散序列的小波重构 195
6.5 二维正交小波变换 195
6.5.1 L2(R2)空间的两种正交小波基 195
6.5.2 正方块二维正交小波变换的快速算法 199
6.6 本章小结 200

第7章 小波基及其构造 201
7.1 几种常用的小波 201
7.1.1 Haar小波 201
7.1.2 Daubechies(dbN)小波系 202
7.1.3 双正交小波Biorthogonal(biorNr.Nd)小波系 203
7.1.4 Coiflet(coifN)小波系 203
7.1.5 SymletsA(symN)小波系 204
7.1.6 Morlet(morl)小波 204
7.1.7 MexicanHat(mexh)小波 204
7.1.8 Meyer函数 205
7.2 小波基的性质及其在MATLAB中的命名 206
7.3 小波基的构造 206
7.3.1 由尺度函数构造正交小波基 207
7.3.2 紧支集正交小波基的性质和构造 209
7.3.3 实现小波基的构造 213
7.4 提升方案构造二代小波并实现 217
7.4.1 提升方案的基本原理 217
7.4.2 提升法实现第二代小波变换 223
7.4.3 提升方法实现图像的分解与重构 226
7.5 小波和尺度函数的提取及消失矩的作用 230
7.6 本章小结 234

第8章 小波包及其应用 235
8.1 小波包 235
8.1.1 小波包的定义 235
8.1.2 小波包的性质 237
8.1.3 小波包的空间分解 237
8.1.4 小波包算法 238
8.2 一维小波包在MATLAB中的应用 238
8.2.1 一维小波包函数 239
8.2.2 一维小波包界面式应用——信号压缩 242
8.2.3 一维小波包界面式应用——信号去噪 246
8.3 二维小波包在MATLAB中的应用 249
8.3.1 二维小波包函数 249
8.3.2 二维小波包界面式应用——图像压缩 252
8.3.3 二维小波包界面式应用——图像去噪 255
8.4 小波包分析的综合应用实例 257
8.5 本章小结 263

第9章 小波分析用于信号滤波 265
9.1 小波滤波概述 265
9.1.1 小波滤波的原理 265
9.1.2 小波域的三种滤波法 266
9.2 滤波器 268
9.2.1 陷波滤波器 268
9.2.2 单陷波滤波器 270
9.2.3 多频率陷波滤波器 271
9.3 小波阈值滤波法 273
9.3.1 阈值的几种形式 273
9.3.2 阈值函数数学表达式 274
9.3.3 几种改进的阈值函数 275
9.4 MATLAB中小波滤波函数及应用 276
9.4.1 MATLAB小波滤波函数介绍 276
9.4.2 小波滤波器应用 279
9.5 重构滤波器组 280
9.5.1 完全重构滤波器组 281
9.5.2 完全重构滤波器组的滤波效应 283
9.6 小波滤波器构造MATLAB实例 284
9.7 小波阈值滤波器的设计 292
9.7.1 设计目标 292
9.7.2 子模块设计 294
9.7.3 滤波器模块 294
9.7.4 系数处理模块 294
9.8 本章小结 295

第10章 小波分析用于信号去噪 296
10.1 信号去噪原理 296
10.1.1 小波去噪概述 296
10.1.2 基于模极大值去噪法 298
10.1.3 小波阈值去噪 298
10.1.4 平移不变量法 299
10.1.5 其他方法 300
10.1.6 阈值的选取 300
10.1.7 现有方法的优缺点 301
10.1.8 小波去噪的基本原理 302
10.1.9 各种小波变换在小波去噪中的应用 303
10.2 MATLAB函数去噪 303
10.2.1 一维小波分析进行信号去噪 303
10.2.2 阈值选取规则 307
10.2.3 对非平稳信号的去噪 308
10.2.4 小波包分析进行信号去噪 310
10.3 MATLAB一维小波工具箱去噪 313
10.3.1 一维离散小波界面式去噪 313
10.3.2 一维小波包界面式去噪 316
10.4 小波去噪实例 318
10.5 基于小波变换的语音信号去噪 321
10.5.1 语音信号去噪 321
10.5.2 语音质量的评价 322
10.5.3 小波变换的语音去噪实例 323
10.6 本章小结 326

第11章 小波分析用于信号压缩 327
11.1 信号压缩 327
11.1.1 小波压缩概述 327
11.1.2 一维小波分析进行压缩的原理 328
11.1.3 小波压缩实现方法 329
11.2 MATLAB压缩函数 330
11.2.1 一维小波分析进行信号压缩 330
11.2.2 小波包分析进行信号压缩 331
11.3 MATLAB一维小波工具箱压缩 334
11.3.1 一维离散小波界面式压缩 334
11.3.2 一维小波包界面式压缩 337
11.4 小波压缩综合实例 340
11.5 本章小结 343

第12章 小波分析用于信号识别与检测 344
12.1 信号的奇异性检测理论 344
12.1.1 信号奇异性概念 344
12.1.2 Fourier变换与信号奇异性的关系 345
12.1.3 小波变换与信号的奇异性 345
12.1.4 小波变换模极大值点同信号突变点之间的关系 346
12.1.5 信号与噪声的小波变换特性 347
12.2 信号的间断点检测 349
12.2.1 第一类间断点检测 349
12.2.2 第二类间断点检测 354
12.3 信号的自相似检测 357
12.4 信号识别与信号提取 358
12.4.1 信号发展趋势的识别 358
12.4.2 某一频率区间上信号的识别 359
12.4.3 信号的特征提取 361
12.5 模态参数识别介绍 363
12.5.1 模态分析的时频辨识方法概述 363
12.5.2 信号的小波脊提取及计算方法 364
12.5.3 基于小波包和改进HHT的瞬时特征分析 365
12.5.4 模态参数识别的应用 366
12.6 二维信号的边缘检测 371
12.7 本章小结 374

第13章 小波分析用于图像去噪 375
13.1 图像处理概述 375
13.1.1 常用图像格式 375
13.1.2 图像类型 377
13.1.3 图像类型转换 379
13.1.4 图像显示 381
13.2 小波用于图像去噪方法 382
13.2.1 图像噪声概述 382
13.2.2 图像去噪方法概述 383
13.2.3 图像去噪现有方法的优缺点 386
13.2.4 图像去噪质量的评价 387
13.3 MATLAB去噪函数 388
13.3.1 基于去噪函数进行图像去噪 388
13.3.2 基于小波变换进行图像去噪 391
13.3.3 基于阈值法进行图像去噪 392
13.3.4 基于小波包分析进行图像去噪 394
13.4 MATLAB二维小波工具箱去噪 398
13.4.1 二维离散小波界面式去噪 398
13.4.2 二维小波包界面式去噪 401
13.5 小波图像去噪实例 404
13.6 本章小结 406

第14章 小波分析用于图像压缩 407
14.1 图像压缩介绍 407
14.1.1 数据冗余 407
14.1.2 变换编码 409
14.1.3 图像压缩模型 409
14.1.4 图像压缩技术 410
14.1.5 JPEG 2000压缩算法 411
14.1.6 JPEG与JPEG 2000的区别 412
14.1.7 基于DCT的JPEG图像压缩编码 414
14.2 基于DCT的图像压缩MATLAB仿真实现 419
14.2.1 数字图像文件的读写 419
14.2.2 程序流程图 420
14.2.3 DCT变换的编程实现 420
14.3 基于小波压缩函数进行图像压缩 422
14.3.1 小波变换压缩函数的应用实例 422
14.3.2 基于小波包变换的图像压缩 426
14.4 MATLAB二维小波工具箱压缩 427
14.4.1 二维离散小波界面式压缩 427
14.4.2 二维小波包界面式压缩 430
14.5 利用小波分析进行图像压缩实例 433
14.6 本章小结 436

第15章 小波分析用于图像增强 437
15.1 图像增强技术 437
15.1.1 滤波增强 437
15.1.2 滤波器 438
15.2 MATLAB图像增强函数及应用 438
15.2.1 图像增强函数 438
15.2.2 MATLAB应用于数字图像增强和滤波 439
15.3 小波分析用于图像增强 445
15.3.1 图像增强问题描述 445
15.3.2 基于小波分析的图像钝化实现 445
15.3.3 基于小波分析的图像锐化实现 447
15.3.4 基于小波分析的图像增强实现 448
15.3.5 基于小波分析的图像平滑实现 449
15.4 本章小结 452

第16章 小波分析用于图像处理其他领域 453
16.1 图像融合 453
16.1.1 小波分析用于图像融合的方法 453
16.1.2 融合规则和融合算子 454
16.1.3 小波包图像融合 454
16.1.4 小波框架图像融合 455
16.1.5 多小波图像融合 455
16.1.6 小波分析用于图像融合的实例 456
16.2 图像分解 459
16.3 图像特征提取 462
16.4 本章小结 466

第17章 小波分析用于样本估计 467
17.1 小波分析用于密度估计 467
17.1.1 密度估计 467
17.1.2 小波变换进行密度估计的基本原理 468
17.1.3 小波变换进行密度估计界面工具的使用 469
17.2 小波分析用于回归估计 472
17.2.1 回归估计 472
17.2.2 小波变换进行回归估计的基本原理 473
17.2.3 小波变换进行回归估计界面工具的使用 474
17.3 本章小结 477

参考文献 478
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP