作者江泽涵 著
出版社科学出版社
出版时间2010-12
版次1
装帧平装
上书时间2024-12-04
商品详情
- 品相描述:八五品
图书标准信息
-
作者
江泽涵 著
-
出版社
科学出版社
-
出版时间
2010-12
-
版次
1
-
ISBN
9787030296559
-
定价
48.00元
-
装帧
平装
-
开本
16开
-
纸张
胶版纸
-
页数
196页
-
丛书
中国科学技术经典文库(数学卷)
- 【内容简介】
-
《不动点类理论》主要介绍多面体上的不动点理论,这个理论是拓扑学中不动点理论的发展。《不动点类理论》全面介绍国内外数学家在不动点方面的研究成果。
- 【目录】
-
序
记号表
第1章一般问题、一个特例、一点历史
引言
A.圆周的整幂映射
1.整幂映射、Lefschetz数、不动点
2.指数映射、整幂映射的提升
3.提升的不动点、提升类、不动点类
B.圆周的一般自映射
4.不动点的指数
5.自映射的提升、自映射的同伦分类、提升的不动点
6.圆周的L定理
7.提升类、不动点类
8.不动点类的指数、Nielsen数、圆周的Ⅳ定理
C.不动点类理论介绍、一点历史
9.从特例到不动点类理论
10.一点历史
第2章不动点类及其指数
1.提升类与不动点类
2.非空不动点类:等价定义个数的有限性
3.在自映射的已知同伦下,不动点类之间的对应
4.同伦下不动点类间的对应:两个充要条件
5.不动点类的指数、Nielsen数
6.不动点类指数及Nielsen数的同伦不变性
7.不动点类指数及Nielsen数的交换性
第3章J群最大时Nielsen数的计算
1.基本群π1(X,xo)的自同态,fπ、fπ类、R(f)的代数定义
2.R(f)的一个下界
3.R(f)=#Coker(1-f*/1)的条件
4.J群及有关的三个引理
5.J群最大时Nielsen数的计算
6.前节两定理的应用
第4章映射类的最少不动点数
1.点同伦和线同伦
2.不动点的移动和合并、二维连通多面体的#Ф()
3.好星式移动
4.一般多面体的#Ф()
5.一般映射类的最少不动点数
第5章另一种Nielsen数N(f,H)、根类
另一种Nielsen数N(f,H)
1.基本假设、定义与定理(见[23])
2.例(闭流形的自同胚)
根类
3.从自映射的不动点类到方程的根类
4.根类在映射的同伦下的对应
5.X的基本群π1(X,X*)的另一个子群S(X,X*)
6.方程的Reidemeister数
7.根类的指数、S(X,X*)最大时的Nielsen数的计算
附录A同伦概念、基本群
1.同伦
2.道路、积与逆、子道路
3.两种道路类
4.从定端道路类到基本群
5.基本群的一些性质
附录B复迭空间
1.复迭空间的抽象定义、道路提升的两个基本定理
2.空间X的自映射的提升的两个基本定理
3.空间X的诸复迭空间的同态、同构与升腾
4.具体构造
5.泛复迭空间中提升的具体式子
附录C逼近定理
1.多面体映射的短同伦
2.多面体映射的逼近定理
附录D不动点的指数
1.Rn中的不动点指数
2.Rn中的不动点指数的性质、唯一性
3.Rn中的不动点指数的性质(续)
4.多面体与欧几里得邻域收缩核(ENR)
5.ENR上的不动点指数
6.ENR上的不动点指数f续)
参考文献
索引
后记
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价