• 保正版!冲击爆炸荷载作用下的超高性能水泥基材料方秦9787030676986科学出版社
21年品牌 40万+商家 超1.5亿件商品

保正版!冲击爆炸荷载作用下的超高性能水泥基材料方秦9787030676986科学出版社

保证全新正版!7天无理由,17点之前基本当天发, 可开票,假一罚十.

259.37 6.5折 398 全新

库存6件

北京朝阳
认证卖家担保交易快速发货售后保障

作者方秦

出版社科学出版社

ISBN9787030676986

出版时间2021-03

装帧平装

开本16开

定价398元

货号29223262

上书时间2024-10-19

慧成学苑

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
前言

Compared with the normal strength concrete (NSC), ultra­high performance cementitious composites (UHPCC) is a relativity new type of cementitious materials which consists of very low water­to­binder ratio, high amount of high­range water reducer, fine aggregates and high­strength steel or organic fibers. With the prominent mechanical properties, e.g., high compressive and tensile strength, high ductility, high fracture energy and very lowpermeability,UHPCChas been becoming the most prospective construction cement­based material for both civil and military engineering structures, such as fortifications, nuclear waste storage containments, highway bridges, high­rise buildings, to resist high­speed projectile penetration, lowvelocity impact and blast, as well as earthquake loadings. Therefore, investigations on the static and dynamic mechanical properties as well as the impact and blast resistance of UHPCC are essential and important for the design and safety assessment of protective structures. In this book, the related work conducted by authors are presented and the main contents are as follows:  
Chapter 1:Aseries of cubic/axial compressive, direct tensile, four­point and threepoint flexural tests on UHPCC specimens are presented, in which the effects of six volume fractions (0 ~ 2.5%) and two types (micro­straight and hooked) of steel fibers on the static mechanical properties of UHPCC are examined.  
Chapter 2: The SHPB test on UHPCC specimens is presented, in which the effects of strain rate ranges from 17.6 to 328.4 s−1 and two typical steel fibers (micro­straight and hooked) with three volume fractions of 0%, 1.0% and 2.0% on the dynamic compressive mechanical properties of UHPCC are analyzed.  
Chapter 3: By using a 50 mm­diameter conic variable cross­sectional SHPB, the dynamic spalling test on cylindrical UHPCC specimens is given, and the influences of the tensile strain rate range from 14.3 to 214.8 s−1, and two typical steel fibers (micro­straight and hooked) with three volume fractions of 0%, 1.0% and 2.0% on the dynamic tensile mechanical properties of UHPCC are studied.  
Chapter 4: The triaxial compressive behavior of UHPCC under high confining pressure (up to 100 MPa) is experimentally studied, and the failure criteria and toughness of UHPCC under triaxial compression are discussed.  
Chapter 5: The impact resistance of coarse aggregated UHPCC target against the medium caliber projectile is studied. The high­speed projectile penetration tests on UHPCC targets with the striking velocities at 510 to 1320 m/s as well as the comparable projectile penetration test onUHP­CASFRCare presented. The influence of coarse aggregates strength on the impact resistance of UHPCC targets is discussed based on the 3D mesoscopic concrete model.  
Chapter 6: Aiming to protect person and valuable equipment from the perforated small caliber arms and scabbing fragments, the 7.62 mm API bullet impacting test on bare and rear fabric (CFRP or UHMWPE) strengthened UHP­BASFRC panels is given and the excellent impact resistance of bare and composite UHP­BASFRC panels is validated.  
Chapter 7: The medium caliber projectile impact resistance of armor steel/ceramic/UHPCC­layered composite targets against 30CrMnSiNi2A steel projectiles is experimentally studied. The numerical simulations are further performed by calibrating the Johnson and Cook (JC) constitutive model parameters of the 10CrNi3MoV21A, NP450 and NP500 armor steel.  
Chapter 8: The impact behavior of UHPCC­FST under transverse impact load is investigated experimentally and numerically. Three UHPCC­FST specimens subjected to low­velocity impact by using a drop­hammer impact device are examined experimentally. The model parameters of K&C model for UHPCC are calibrated by using the existing static and dynamic experimental data. Then, a FE analysis model is established to predict the dynamic responses of UHPCC­FSTs under transverse impact load.  
Chapter 9: A total of eleven steel bar reinforced UHPCC and two reinforced NSC control specimens subjected to drop­hammer impact are studied. The outstanding impact resistance of UHPC members is validated and assessed quantitatively. The model parameters and the parameters generation method of continuous surface cap (CSC) model for UHPCC are calibrated and fully validated.  
Chapter 10: The test on five UHPCC­FST specimens under contact explosion of TNT charges is given, and the original axial capacity of the intact columns and the residual axial capacity of the blast­damaged columns are further evaluated though the axial compression tests. Besides, the damage and failure modes of UHPCC­FST are numerically reproduced, and the related parametric influences are discussed.  
Chapter 11: The field test of four circular UHPCC­FST specimens under the close­range TNT charge explosion with the scaled standoff distance of 0.12 ~ 0.14 m/kg1/3 is presented. The dynamic responses of those specimens are analyzed by three different methods, i.e.,ALEmethod, velocity loading method andSDOFmethod, and the velocity method is recommended by considering both the accuracy and efficiency of computation.  
Chapter 12: The residual seismic resistance (RSR) of UHPCC­FST specimens after contact explosion is studied experimentally. The specimens are firstly subjected to blast loadings, in which the TNT charge weights are 1 ~ 3 kg and the height of bursts are set to 250 mm. Furthermore, the RSR of UHPCC­FST specimens are examined through the low­frequency horizontal cyclic loading test in two perpendicular directions. A composite damage index is proposed to evaluate the RSR of the post­blast columns.  
Chapter 13: The field tests and numerical simulations of the blast­resistant behavior of one­way simply supported reinforced UHPCC panels and NSC control panels are performed. The explosion tests are in different scaled distances (0.5 ~ 1.0 m/kg1/3) with end­detonated cylindrical charges. The blast loadings induced by the medium­range explosions and the constitutive model parameters of UHPC are mainly concerned. The proposed FE model, numerical algorithm and the calibrated model parameters are fully verified by comparing to the test data.  
Chapter 14: A new constitutive model of UHPCC material under impact and blast loadings is developed, which involves proposing a new tensile damage model for UHPCC which is then incorporated into the Kong­Fang material model recently developed, and calibrating parameters of this modified material model based on existing test data. Single element tests are firstly conducted to demonstrate the performances of the proposed material model. Then, three selected experiments are numerically simulated and compared with corresponding experimental data and good agreements are observed.  
Professor Qi Hu Qian is our guide though the study of protective structures. The late Prof. Zhao Yuan Chen from Tsinghua University and Prof. Wei Sun from Southeast University always encouraged us to develop new blast/impact­resistant materials and structures. We are grateful to them for introducing and helping us to continue to walk along this path with ever­increasing interest.  
The present book is the result of a cooperative effort of our team. The authors would like to thank the our colleagues and postgraduates, who are Jianzhong Liu, Genmao Ren, Yong Peng, Ziguo Wang, Yangxiu Zhai, Yuehua Cheng. The authors would also like to take this opportunity to thank the long­tern support provided by National Natural Science Foundation of China. We hope this book will serve as a useful source of information for scientists, engineers and students active in protective structure research.  

Nanjing, China                                  Qin Fang 
Shanghai, China                                 Hao Wu 
Nanjing, China                                  Xiangzhen Kong  

 



目录

Static Mechanical Properties of UHPCC 1 
1.1 Introduction . 1 
1.2 Test Program 2 
1.2.1 Raw Materials and Mixture Proportions . 2 
1.2.2 Specimen Preparation and Curing 4 
1.3 Instrumentation and Loading Scheme . 5 
1.3.1 Cubic Compressive Test . 5 
1.3.2 Axial Compressive Test 6 
1.3.3 Direct Tensile Test 7 
1.3.4 Four­Point Flexural Test . 8 
1.3.5 Three­Point Flexural Test 9 
1.4 Test Results and Discussion 10 
1.4.1 Compression Test 10 
1.4.2 Direct Tension Test . 14 
1.4.3 Four­Point Flexure Test 17 
1.4.4 Three­Point Flexure Test . 21 
1.5 Summary . 27 
References 28 
2 Dynamic Compressive Mechanical Properties of UHPCC . 31 
2.1 Introduction . 31 
2.2 Specimen Preparation 32 
2.3 SHPB Test 33 
2.3.1 Test Device . 33 
2.3.2 Test Technique 34 
2.4 Test Results and Discussions . 37 
2.4.1 Stress Equilibrium 37 
2.4.2 Strain Rate Determination 38 
2.4.3 Dynamic Failure Pattern . 39 
2.4.4 Dynamic Stress–Strain Curve . 40 
2.4.5 Dynamic Increase Factor . 44 
2.4.6 Energy Absorption Capacity 48 
ix 
x Contents 
2.5 Visco­Elastic Damage Model 49 
2.5.1 Nonlinear Visco&

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP