正版现货
¥ 2 九五品
库存2件
作者[美]Jeff Sauro James R. Lewis 著;殷文婧、徐沙、杨晨燕 译
出版社机械工业出版社
出版时间2014-04
版次1
装帧平装
上书时间2022-05-12
《用户体验度量:量化用户体验的统计学方法》是使用统计学解决用户研究中常见问题的指南。它包含了你每天都要面对的常见问题,例如:当前的产品是否比竞争者的产品更易用?我们能确信70%的用户在第一次尝试时就完成任务吗?用户在网站上购买商品需要花费多长时间?本书详细阐述如何选择统计检验方法,以及在应用这些方法时如何为统计理论和最佳实践提供基础。
本书聚焦于可应用于实际用户研究项目的方法,是作者实际工作经验、调查研究,以及对最新的统计学、心理学、人因工程学的文献资料研读的结晶。它不只是对传统统计学的复述,而是为当今从业者提供了全新和切题的解读。
为各种项目中可用性测试的统计问题提供操作指南,包括使用六西格玛的项目。
向从业者展示选择哪种检验方法,其适用的原因以及应用中的最佳实践,并为分析数据提供易于使用的Excel公式和网页形式的计算器。
向从业者推荐使用通俗易懂的语言与相关人员沟通结论的一些方法。
第1章 导论1 1.1 简介
1.2 本书的组织结构
1.3 如何使用本书
1.3.1 应该使用何种检验
1.3.2 我需要多大的样本量
1.3.3 你不必手动计算
1.4 本章要点
1.5 本章思考题
1.6 参考资料
第2章 量化用户研究
2.1 什么是用户研究
2.2 用户研究的数据
2.3 可用性测试
2.3.1 样本量
2.3.2 代表性和随机性
2.3.3 数据收集
2.3.4 任务完成率
2.3.5 可用性问题
2.3.6 任务时间
2.3.7 出错数
2.3.8 满意度评分
2.3.9 复合分数
2.4 A/B测试
2.5 调查数据
2.5.1 等级量表
2.5.2 净推荐值
2.5.3 评论和开放性数据
2.6 需求收集
2.7 本章要点
2.8 参考资料
第3章 我们的估算到底有多准确
3.1 简介
3.1.1 置信区间=误差幅度的两倍
3.1.2 置信区间提供了精确度和位置
3.1.3 置信区间的三个组成部分
3.2 完成率的置信区间
3.2.1 置信区间的历史
3.2.2 Wald区间:对于小样本来说就太不靠谱了
3.2.3 精确置信区间
3.2.4 Wald校正区间:增加两个成功与两个失败
3.2.5 完成率的最佳点估计
3.2.6 遭遇可用性问题的置信区间
3.3 等级量表和其他连续性数据的置信区间
3.3.1 任务时长数据的置信区间
3.3.2 任务时长均值还是任务时长中位数
3.3.3 几何均值
3.3.4 大样本任务时长的置信区间
3.3.5 围绕中位数的置信区间
3.4 本章要点
3.5 本章思考题
3.6 参考资料
第4章 我们达到或超过目标了吗
4.1 简介
4.2 单侧检验和双侧检验
4.3 完成率与基准的比对
4.3.1 小样本检验
4.3.2 大样本检验
4.4 满意度分数与基准的比对
4.5 任务时间和基准的比对
4.6 本章要点
4.7 本章思考题
4.8 参考资料
第5章 不同设计之间有统计学差异吗
5.1 简介
5.2 比较两个平均值(等级量表和反应时)
5.2.1 被试内设计比较--配对t检验
5.2.2 比较任务时长
5.2.3 组间比较(双样本t检验)
5.2.4 t检验的假设
5.3 比较完成率、转换率以及A/B测试
5.3.1 组间比较
5.3.2 组内比较
5.4 本章要点
5.5 本章思考题
5.6 参考资料
第一部分:总结性研究
第6章 我们需要多大的样本量
6.1 简介
6.1.1 我们为何要关注
6.1.2 可用性研究的类型至关重要
6.1.3 总结性可用性测试样本量预估的基本原则
6.2 预估数值
6.3 比较数值
6.4 如何控制变异性
6.5 二项置信区间样本量的估计
6.5.1 大样本的二项样本量估计
6.5.2 小样本的二项样本量估计
6.5.3 与基准比例相比较的样本量
6.6 卡方检验的样本量预估(独立比例)
6.7 MCNEMAR精确检验的样本预估(配对比例)
6.8 本章要点
6.9 本章思考题
6.10 参考资料
第二部分:形成性研究
第7章 我们需要多大的样本量
7.1 简介
7.2 使用发现问题的概率模型来估计形成性用户研究的样本量
7.2.1 著名方程:P(x≥1)=1-(1-p)n
7.2.2 从1-(1-p)n中推导出样本量估计方程
7.2.3 使用表格计划形成性用户研究样本量
7.3 二项概率模型的假设
7.4 模型的附加应用
7.4.1 估计多重问题或其他事件的复合p值
7.4.2 校正小样本p的复合估计值
7.4.3 估计可发现的问题数和未被发现的问题数
7.5 影响p值的是什么
7.6 什么是合理的目标问题发现率
7.7 调解"神奇的数字5"和"8还不够"
7.7.1 一段历史:20世纪80年代
7.7.2 又一段历史:20世纪90年代
7.7.3 "神奇的数字5"的起源
7.7.4 "8还不够":一个调解方法
7.8 更多关于二项概率公式和其小样本校正
7.8.1 二项概率公式的起源
7.8.2 紧缩校正是如何起作用的
7.9 针对问题发现的其他统计模型
7.9.1 对问题发现使用二项式模型的批评
7.9.2 扩展的二项式模型
7.9.3 Capture recapture模型
7.9.4 在计划形成性用户研究时为什么不用其他模型
7.10 本章要点
7.11 本章思考题
7.12 参考资料
第8章 标准化的可用性问卷
8.1 简介
8.1.1 什么是标准化的问卷
8.1.2 标准化可用性问卷的优点
8.1.3 什么样的标准化可用性问卷是有用的
8.1.4 标准化问卷的质量评估:信度、效度和灵敏度
8.1.5 问卷的步距数
8.2 整体评估问卷
8.2.1 QUIS(用户交互满意度问卷)
8.2.2 SUMI(软件可用性测试问卷)
8.2.3 PSSUQ
8.2.4 SUS(软件可用性问卷)
8.2.5 可用性整体评估问卷的实验比较
8.3 任务评估问卷
8.3.1 场景后问卷
8.3.2 单项难易度问卷
8.3.3 主观脑力负荷问题
8.3.4 期望评级
8.3.5 可用性等级评估
8.3.6 任务评估问卷的实验比较
8.4 网站感知可用性的评估问卷
8.4.1 网站分析和测量问卷
8.4.2 标准通用的百分等级问卷
8.4.3 其他评估网站的问卷
8.5 其他有趣的问卷
8.5.1 计算机系统可用性问卷
8.5.2 有用性、满意度、易用性
8.5.3 用户经验的可用性度量
8.5.4 享受性质量
8.5.5 美国消费者满意度指标
8.5.6 净推荐值
8.5.7 福雷斯特客户体验指数
8.5.8 技术接受模型
8.6 本章要点
8.7 本章思考题
8.8 参考资料
第9章 测量和统计的六大持久论战
9.1 介绍
9.2 对多点量表数据进行平均合理吗
9.2.1 一方观点
9.2.2 另一方观点
9.2.3 我们的推荐
9.3 需要测试至少30名用户吗
9.3.1 一方观点
9.3.2 另一方观点
9.3.3 我们的推荐
9.4 所有的实验都要进行双侧检验吗
9.4.1 一方观点
9.4.2 另一方观点
9.4.3 我们的推荐
9.5 当p>0.05时,我们能拒绝原假设吗
9.5.1 一方观点
9.5.2 另一方观点
9.5.3 我们的推荐
9.6 能将各种可用性度量指标合并到一个分数中吗
9.6.1 一方观点
9.6.2 另一方观点
9.6.3 我们的推荐
9.7 假使你需要进行多次检验该怎么办
9.7.1 一方观点
9.7.2 另一方观点
9.7.3 我们的推荐
9.8 本章要点
9.9 本章思考题
9.10 参考资料
第10章 总结
10.1 简介
10.2 更多信息
10.3 好运
10.4 本章要点
10.5 参考资料
附录A 基础统计概念速成
— 没有更多了 —
以下为对购买帮助不大的评价