• 动力系统V:分歧理论和突变理论
  • 动力系统V:分歧理论和突变理论
  • 动力系统V:分歧理论和突变理论
  • 动力系统V:分歧理论和突变理论
  • 动力系统V:分歧理论和突变理论
  • 动力系统V:分歧理论和突变理论
  • 动力系统V:分歧理论和突变理论
  • 动力系统V:分歧理论和突变理论
  • 动力系统V:分歧理论和突变理论
  • 动力系统V:分歧理论和突变理论
21年品牌 40万+商家 超1.5亿件商品

动力系统V:分歧理论和突变理论

85 九五品

仅1件

天津南开
认证卖家担保交易快速发货售后保障

作者[俄罗斯]阿诺德 著

出版社科学出版社

出版时间2009-01

版次1

装帧精装

货号21

上书时间2024-12-12

大爽爽的书摊的书店

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九五品
图书标准信息
  • 作者 [俄罗斯]阿诺德 著
  • 出版社 科学出版社
  • 出版时间 2009-01
  • 版次 1
  • ISBN 9787030234933
  • 定价 68.00元
  • 装帧 精装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 271页
  • 字数 341千字
  • 正文语种 英语
【内容简介】
  Both bifurcation theory and catastrophe theory are studies of smooth systems,tbcusing on properties that seem manifestly non-smooth. Bifurcations are sudden changes that occur in a system as one or more parameters are varied.Catastrophe theory is accurately described as singularity theory and its applications.
  These two theories are important tools in the study of differential equations and of related physical systems.Analyzing the bifurcations or singularities of a system provides useful qualitative information about its behaviour. The authors have written this book with reffeshing clarity.Theexposition is masterful,with penetrating insights.
【目录】
Preface
Chapter1.BifurcationsofEquilibria
1.FamiliesandDeformations
1.1.FamiliesofVectorFields
1.2.TheSpaceofJets
1.3.SardsLemmaandTransversalityTheorems
1.4.SimplestApplications:SingularPointsofGenericVectorFields
1.5.TopologicallyVersalDeformations
1.6.TheReductionTheorem
1.7.GenericandPrincipalFamilies

2.BifurcationsofSingularPointsinGenericOne-ParameterFamilies
2.1TypicalGermsandPrincipalFamilies
2.2.SoftandHardLossofStability

3.BifurcationsofSingularPointsinGenericMulti-ParameterFamilieswithSimplyDegenerateLinearParts
3.1.PrincipalFamilies
3.2.BifurcationDiagramsofthePrincipalFamilies(3-+)inTable1
3.3.BifurcationDiagramswithRespecttoWeakEquivalenceandPhasePortraitsofthePrincipalFamilies(4-+)inTable1

4.BifurcationsofSingularPointsofVectorFieldswithaDoubly-DegenerateLinearPart
4.1.AListofDegeneracies
4.2.TwoZeroEigenvalues
4.3.ReductionstoTwo-DimensionalSystems
4.4.OneZeroandaPairofPurelyImaginaryEigenvalues
4.5.TwoPurelyImaginaryPairs
4.6.PrincipalDeformationsofEquationsofDifficultTypeinProblemswithTwoPairsofPurelyImaginaryEigenvalues(FollowingZolitdek)
5.TheExponentsofSoftandHardLossofStability
5.1.Definitions
5.2.TableofExponents

Chapter2.BifurcationsofLimitCycles
1.BifurcationsofLimitCyclesinGenericOne-ParameterFamilies
1.1.MultiplierI
1.2.Multiplier-1andPeriod-DoublingBifurcations
1.3.APairofComplexConjugateMultipliers
1.4.NonlocalBifurcationsinOne-ParameterFamiliesofDiffeomorphisms
1.5.NonlocalBifurcationsofPeriodicSolutions
1.6.BifurcationsResultinginDestructionsofInvariantTori

2.BifurcationsofCyclesinGenericTwo-ParameterFamilieswithan
AdditionalSimpleDegeneracy
2.1.AListofDegeneracies
2.2.AMultiplier+1or-1withAdditionalDegeneracyintheNonlinearTerms
2.3.APairofMultipliersontheUnitCirclewithAdditionalDegeneracyintheNonlinearTerms

3.BifurcationsofCyclesinGenericTwo-ParameterFamilieswithStrongResonancesofOrdersq≠4
3.1.TheNormalFormintheCaseofUnipotentJordanBlocks
3.2.AveragingintheSeifertandtheM6biusFoliations
3.3.PrincipalVectorFieldsandtheirDeformations
3.4.VersalityofPrincipalDeformations
3.5.BifurcationsofStationarySolutionsofPeriodicDifferentialEquationswithStrongResonancesofOrdersq≠4

4.BifurcationsofLimitCyclesforaPairofMultipliersCrossingthe
UnitCircleat±i
4.1.DegenerateFamilies
4.2.DegenerateFamiliesFoundAnalytically
4.3.DegenerateFamiliesFoundNumerically
4.4.BifurcationsinNondegenerateFamilies
4.5.LimitCyclesofSystemswithaFourthOrderSymmetry

5.Finitely-SmoothNormalFormsofLocalFamilies
5.1.ASynopsisofResults
5.2.DefinitionsandExamples
5.3.GeneralTheoremsandDeformationsofNonresonantGerms
5.4.ReductiontoLinearNormalForm
5.5.DeformationsofGermsofDiffeomorphismsofPoincareType
5.6.DeformationsofSimplyResonantHyperbolicGerms
5.7.DeformationsofGermsofVectorFieldswithOneZeroEigenvalueataSingularPoint
5.8.FunctionalInvariantsofDiffeomorphismsoftheLine
5.9.FunctionalInvariantsofLocalFamiliesofDiffeomorphisms
5.10.FunctionalInvariantsofFamiliesofVectorFields
5.11.FunctionalInvariantsofTopologicalClassificationsofLocalFamiliesofDiffeomorphismsoftheLine

6.FeigenbaumUniversalityforDiffeomorphismsandFlows
6.1.Period-DoublingCascades
6.2.PerestroikasofFixedPoints
6.3.Cascadesofn-foldIncreasesofPeriod
6.4.DoublinginHamiltonianSystems
6.5.ThePeriod-DoublingOperatorforOne-DimensionalMappings
6.6.TheUniversalPeriod-DoublingMechanismforDiffeomorphisms

Chapter3.NonlocalBifurcations
1.DegeneraciesofCodimension1.SummaryofResults
1.1.LocalandNonlocalBifurcations
1.2.NonhyperbolicSingularPoints
1.3.NonhyperbolicCycles
1.4.NontransversalIntersectionsofManifolds
1.5.Contours
1.6.BifurcationSurfaces
1.7.CharacteristicsofBifurcations
1.8.SummaryofResults

2.NonlocalBifurcationsofFlowsonTwo-DimensionalSurfaces
2.1.SemilocalBifurcationsofFlowsonSurfaces
2.2.NonlocalBifurcationsonaSphere:TheOne-ParameterCase.
2.3.GenericFamiliesofVectorFields
2.4.ConditionsforGenericity
2.5.One-ParameterFamiliesonSurfacesdifferentfromtheSphere
2.6.GlobalBifurcationsofSystemswithaGlobalTransversalSectiononaTorus
2.7.SomeGlobalBifurcationsonaKleinbottle
2.8.BifurcationsonaTwo-DimensionalSphere:TheMulti-ParameterCase
2.9.SomeOpenQuestions

3.BifurcationsofTrajectoriesHomoclinictoaNonhyperbolicSingularPoint
3.1.ANodeinitsHyperbolicVariables
3.2.ASaddleinitsHyperbolicVariables:OneHomoclinicTrajectory
3.3.TheTopologicalBernoulliAutomorphism
3.4.ASaddleinitsHyperbolicVariables:SeveralHomoclinicTrajectories
3.5.PrincipalFamilies

4.BifurcationsofTrajectoriesHomoclinictoaNonhyperbolicCycle
4.1.TheStructureofaFamilyofHomoclinicTrajectories
4.2.CriticalandNoncriticalCycles
4.3.CreationofaSmoothTwo-DimensionalAttractor
4.4.CreationofComplexInvariantSets(TheNoncriticalCase)...
4.5.TheCriticalCase
4.6.ATwo-StepTransitionfromStabilitytoTurbulence
4.7.ANoncompactSetofHomoclinicTrajectories
4.8.Intermittency
4.9.AccessibilityandNonaccessibility
4.10.StabilityofFamiliesofDiffeomorphisms
4.11.SomeOpenQuestions

5.HyperbolicSingularPointswithHomoclinicTrajectories
5.1.PreliminaryNotions:LeadingDirectionsandSaddleNumbers
5.2.BifurcationsofHomoclinicTrajectoriesofaSaddlethatTakePlaceontheBoundaryoftheSetofMorse-SmaleSystems
5.3.RequirementsforGenericity
5,4,PrincipalFamiliesinR3andtheirProperties
5.5.VersalityofthePrincipalFamilies
5.6.ASaddlewithComplexLeadingDirectioninR3
5.7.AnAddition:BifurcationsofHomoclinicLoopsOutsidetheBoundaryofaSetofMorse-SmaleSystems
5.8.AnAddition:CreationofaStrangeAttractoruponBifurcationofaTrajectoryHomoclinictoaSaddle

6.BifurcationsRelatedtoNontransversalIntersections
6.1.VectorFieldswithNoContoursandNoHomoclinicTrajectories
6.2.ATheoremonInaccessibility
6.3.Moduli
6.4.SystemswithContours
6.5.DiffeomorphismswithNontrivialBasicSets
6.6,VectorFieldsinR3withTrajectoriesHomoclinictoaCycle
6.7.SymbolicDynamics
6.8.BifurcationsofSmaleHorseshoes
6.9.VectorFieldsonaBifurcationSurface
6.10.DiffeomorphismswithanInfiniteSetofStablePeriodicTrajectories

7.InfiniteNonwanderingSets
7.1.VectorFieldsontheTwo-DimensionalTorus
7.2.BifurcationsofSystemswithTwoHomoclinicCurvesofaSaddle
7.3.SystemswithFeigenbaumAttractors
7.4.BirthofNonwanderingSets
7.5.PersistenceandSmoothnessofInvariantManifolds
7.6.TheDegenerateFamilyandItsNeighborhoodinFunctionSpace
7.7.BirthofToriinaThree-DimensionalPhaseSpace

8.AttractorsandtheirBifurcations
8.1.TheLikelyLimitSetAccordingtoMilnor(1985)
8.2.StatisticalLimitSets
8.3.InternalBifurcationsandCrisesofAttractors
8.4.InternalBifurcationsandCrisesofEquilibriaandCycles
8.5.BifurcationsoftheTwo-DimensionalTorus

Chapter4.RelaxationOscillations
1.FundamentalConcepts
1.1.AnExample:vanderPorsEquation
1.2.FastandSlowMotions
1.3.TheSlowSurfaceandSlowEquations
1.4.TheSlowMotionasanApproximationtothePerturbedMotion
1.5.ThePhenomenonofJumping

2.SingularitiesoftheFastandSlowMotions
2.1.SingularitiesofFastMotionsatJumpPointsofSystemswithOneFastVariable
2.2.SingularitiesofProjectionsoftheSlowSurface
2.3.TheSlowMotionforSystemswithOneSlowVariable
2.4.TheSlowMotionforSystemswithTwoSlowVariables
2.5.NormalFormsofPhaseCurvesoftheSlowMotion
2.6.ConnectionwiththeTheoryofImplicitDifferentialEquations
2.7.DegenerationoftheContactStructure

3.TheAsymptoticsofRelaxationOscillations
3.1.DegenerateSystems
3.2.SystemsofFirstApproximation
3.3.NormalizationsofFast-SlowSystemswithTwoSlowVariablesfor
3.4.DerivationoftheSystemsofFirstApproximation
3.5.InvestigationoftheSystemsofFirstApproximation
3.6.Funnels
3.7.PeriodicRelaxationOscillationsinthePlane

4.DelayedLossofStabilityasaPairofEigenvaluesCrosstheImaginaryAxis
4.1.GenericSystems
4.2.DelayedLossofStability
4.3.HardLossofStabilityinAnalyticSystemsofType2
4.4.Hysteresis
4.5.TheMechanismofDelay
4.6.ComputationoftheMomentofJumpinginAnalyticSystems
4.7.DelayUponLossofStabilitybyaCycle
4.8.DelayedLossofStabilityand"Ducks".
5.DuckSolutions
5.1.AnExample:ASingularPointontheFoldoftheSlowSurface
5.2.ExistenceofDuckSolutions
5.3.TheEvolutionofSimpleDegenerateDucks
5.4.ASemi-localPhenomenon:DuckswithRelaxation
5.5.DucksinR3andRn
RecommendedLiterature
References
AdditionalReferences
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP