¥ 26.92 3.1折 ¥ 88 九品
仅1件
作者言有三 著
出版社电子工业出版社
出版时间2020-06
版次1
装帧其他
货号A7
上书时间2024-12-26
本书理论知识体系完备,由浅入深,系统性地介绍了深度学习模型的发展脉络,以及模型深度设计、模型宽度设计、模型通道维度设计、残差连接设计、分组卷积设计、多尺度与非正常卷积设计、多输入网络设计、时序神经网络设计、三维卷积网络设计、动态推理模型与注意力机制设计、生成对抗网络设计这10类主流的深度学习模型设计思想。同时,本书为各模型设计思想提供了大量的实例,供读者实战演练。
本书注重内容的完整性与实用性,既可以作为深度学习与计算机视觉初学者、相关专业的在校学生学习核心算法的书籍,也可以作为相关工程人员查阅相关技术的参考手册。
作者言有三,毕业于中国科学院,有超过5年的深度学习领域从业经验,以及超过6年的计算机视觉从业经验,创办了微信公众号《有三AI》和知识星球《有三AI》等知识生态,目前已经全职做内容输出,于2019年花费大半年时间总结多年的知识积累和深度学习项目经验并撰写了这本书。
第1章 神经网络和计算机视觉基础
第1章 神经网络和计算机视觉基础 1
1.1 计算机视觉 1
1.1.1 研究视觉的重要性 1
1.1.2 生物学视觉原理与视觉分层理论 2
1.2 数字图像基础 3
1.2.1 数字图像基础概述 3
1.2.4 数字图像处理基础 7
1.3 神经网络基础 11
1.3.1 生物神经元与人工神经网络 12
1.3.2 感知机是神经网络吗 12
1.3.3 BP算法 16
第2章 深度学习的基础 20
2.1 全连接神经网络的局限性 20
2.1.1 学习原理的缺陷 20
2.1.2 全连接神经网络的结构缺陷 21
2.1.3 高性能的传统机器学习算法 22
2.2 深度学习第三次复兴简史 22
2.2.1 互联网与大数据来了 23
2.2.2 GPU的普及 23
2.2.3 深层神经网络华丽归来 24
2.2.4 语音识别的重大突破 25
2.2.4 图像识别的重大突破 26
2.2.5 自然语言处理的重大突破 28
2.3 卷积神经网络基础 29
2.3.1 卷积操作 29
2.3.2 反卷积操作 30
2.3.3 卷积神经网络基本概念 31
2.3.4 卷积神经网络的核心思想 33
2.3.5 卷积神经网络的基本结构配置 33
2.4 深度学习优化基础 37
2.4.1 激活模型与常用激活函数 38
2.4.2 参数初始化方法 43
2.4.3 归一化方法 45
2.4.4 池化 49
2.4.5 最优化方法 50
2.4.6 学习率策略 54
2.4.7 正则化方法 57
2.5 深度学习主流开源框架 60
2.5.1 Caffe 60
2.5.2 TensorFlow 61
2.5.3 Pytorch 61
2.5.4 Theano 62
2.5.5 Keras 62
2.5.6 MXNet 63
2.5.7 Chainer 63
参考文献 64
第3章 数据集、评测指标与优化目标 66
3.1 数据集 66
3.1.1 分类数据集MNIST 66
3.1.2 ImageNet 66
3.1.3 分类数据集GHIM-10k 67
3.1.4 分类数据集Place20 67
3.1.5 肖像分割数据集 68
3.1.6 视频分类数据集UCF101 68
3.1.7 目标跟踪数据集ImageNet VIDEO 68
3.2 评测指标 69
3.2.1 分类评测指标 69
3.2.2 检索与回归评测指标 73
3.2.3 图像生成评测指标 75
3.3 优化目标 76
3.3.1 分类任务损失 76
3.3.2 回归任务损失 78
参考文献 80
第4章 加深网络,提升模型性能 81
4.1 经典的浅层卷积神经网络 81
4.1.1 Neocognitron网络 81
4.1.2 TDNN 83
4.1.3 Cresceptron网络 83
4.1.4 LeNet系列 84
4.2 经典网络的深度设计 87
4.2.1 AlexNet 87
4.2.2 从AlexNet到VGGNet的升级 90
4.2.3 为什么需要更深的网络 93
4.3 实验:网络深度对分类模型性能的影响 94
4.3.1 基准模型 94
4.3.2 不同学习率策略与优化方法 96
4.3.3 标准卷积模型网络深度影响实验 104
4.3.4 MobileNet网络深度影响实验 111
4.3.5 总结 113
参考文献 114
第5章 1×1卷积,通道维度升降的利器 115
5.1 特征通道与信息融合 115
5.1.1 通道内特征能做什么 115
5.1.2 通道间特征能做什么 116
5.2 1×1卷积及其应用 117
5.2.1 什么是1×1卷积 117
5.2.2 1×1卷积与瓶颈结构 117
5.2.3 1×1卷积与SqueezeNet 118
5.3 1×1卷积在瓶颈结构中的作用 120
5.3.1 基准模型 120
5.3.2 瓶颈结构探索 126
5.3.3 训练结果 143
5.4 1×1卷积在增强网络表达能力中的作用 145
5.4.1 基准模型 145
5.4.2 网络配置 146
5.4.3 实验结果 146
参考文献 148
第6章 加宽网络,提升模型性能 149
6.1 为什么需要更宽的网络结构 149
6.2 经典模型的网络宽度设计思想 149
6.2.1 调整通道数量 150
6.2.2 多分支网络结构设计 152
6.2.3 通道补偿技术 154
6.3 实验:网络宽度对模型性能的影响 155
6.3.1 实验背景 155
6.3.2 训练结果 161
6.3.3 总结 166
参考文献 166
第7章 残差连接,深层网络收敛的关键 167
7.1 残差连接 167
7.1.1 什么是残差连接 167
7.1.2 为什么残差连接有效 169
7.2 残差网络结构发展和应用 171
7.2.1 密集连接的残差网络结构 171
7.2.2 多分支残差结构 173
7.2.3 残差连接与多尺度信息融合 174
7.3 跳层连接在图像分割中的应用 175
7.3.1 数据集与基准模型 175
7.3.2 Allconv5_SEG实验 184
7.3.3 增加跳层连接 186
参考文献 199
第8章 分组卷积与卷积拆分,移动端高效率经典模型 201
8.1 卷积拆分与分组卷积 201
8.1.1 卷积拆分 201
8.1.2 分组卷积 201
8.2 分组卷积结构 202
8.2.1 简单的通道分组网络 203
8.2.2 级连通道分组网络 204
8.2.3 多分辨率卷积核通道分组网络 205
8.2.4 多尺度通道分组网络 206
8.2.5 多精度通道分组网络 207
8.3 训练一个用于图像分割的实时分组网络 208
8.3.1 项目背景 208
8.3.2 嘴唇分割模型训练 208
8.3.3 嘴唇分割模型优化 212
参考文献 219
第9章 多尺度网络与非正常卷积,更丰富的感受野与不变性 221
9.1 目标常见变换与不变性 221
9.1.1 常见变换 221
9.1.2 从模型本身获取不变性 221
9.1.3 从数据中学习不变性 223
9.2 多尺度网络结构 224
9.2.1 图像金字塔 224
9.2.2 多尺度网络 225
9.3 非正常卷积网络结构 228
9.3.1 带孔卷积 228
9.3.2 可变形卷积 229
9.3.3 非局部卷积 230
9.4 STN在可变形手写数字中的应用 232
9.4.1 项目背景 232
9.4.2 STN实验 233
参考文献 237
第10章 多输入网络,图像检索和排序的基准模型 238
10.1 什么时候需要多个输入 238
10.1.1 图像检索 238
10.1.2 目标跟踪 239
10.1.3 相对排序 239
10.2 常见多输入网络 240
10.2.1 Siamese网络 240
10.2.2 Triplet网络 241
10.3 目标跟踪Siamese网络实战 242
10.3.1 网络结构 242
10.3.2 数据读取 244
10.3.3 损失函数和评估指标 247
10.3.4 模型训练 248
10.3.5 模型测试 249
参考文献 254
第11章 时序神经网络,有记忆的网络更聪明 255
11.1 单向RNN和双向RNN 255
11.1.1 RNN 255
11.1.2 双向RNN 257
11.2 LSTM 258
11.3 LSTM视频分类实践 260
11.3.1 数据准备 260
11.3.2 数据读取 260
11.3.3 网络定义 264
11.3.4 模型训练结果 269
11.3.5 总结 270
第12章 卷积从二维变成三维,实现升维打击 271
12.1 三维卷积 271
12.2 三维卷积的应用 272
12.2.1 分类任务 272
12.2.2 图像分割 274
12.3 一个用于视频分类的三维卷积网络 274
12.3.1 基准模型与数据集 275
12.3.2 数据读取 278
12.3.3 训练结果 280
12.3.4 参数调试 281
12.3.5 总结 283
参考文献 283
第13章 动态推理与注意力机制,网络因样本而异 284
13.1 拓扑结构动态变化的网络 284
13.1.1 训练时拓扑结构变化的网络 284
13.1.2 测试时拓扑结构变化的网络 285
13.2 注意力机制 288
13.2.1 空间注意力模型 289
13.2.2 通道注意力模型[9] 289
13.2.3 混合注意力模型 290
13.3 基于提前退出机制的BranchyNet分类实战 291
13.3.1 背景 291
13.3.2 模型定义 292
13.3.3 实验结果 302
参考文献 305
第14章 生成对抗网络 306
14.1 生成对抗网络的基本原理 306
14.1.1 生成式模型与判别式模型 306
14.1.2 GAN简介 307
14.2 生成对抗网络损失的发展 308
14.2.1 GAN的损失函数问题 308
14.2.2 GAN的损失函数改进 309
14.3 生成对抗网络结构的发展 310
14.3.1 条件GAN 310
14.3.2 多尺度级连GAN 311
14.3.3 多判别器单生成器GAN 312
14.3.4 多生成器单判别器GAN 313
14.3.5 多生成器多判别器GAN 313
14.4 DCGAN图像生成实战 314
14.4.1 项目背景 314
14.4.2 项目解读 315
14.4.3 实验结果 319
参考文献 321
— 没有更多了 —
以下为对购买帮助不大的评价