• 深度学习导论及案例分析
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

深度学习导论及案例分析

14.86 2.5折 59 九品

仅1件

北京东城
认证卖家担保交易快速发货售后保障

作者李玉鑑、张婷 著

出版社机械工业出版社

出版时间2016-10

版次1

装帧平装

货号A7

上书时间2024-12-20

图书-天下的书店

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九品
图书标准信息
  • 作者 李玉鑑、张婷 著
  • 出版社 机械工业出版社
  • 出版时间 2016-10
  • 版次 1
  • ISBN 9787111550754
  • 定价 59.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 292页
  • 字数 110千字
  • 正文语种 简体中文
【内容简介】
  本书不仅介绍了深度学习的发展历史,强调了深层网络的特点和优势,说明了判别模型和生成模型的相关概念,而且详述了深度学习的九种重要模型及其学习算法、变种模型和混杂模型,讨论了深度学习在图像处理、语音处理和自然语言处理等领域的广泛应用,也总结了深度学习目前存在的问题、挑战和未来的发展趋势,还分析了一系列深度学习的基本案例。本书可以作为计算机、自动化、信号处理、机电工程、应用数学等相关专业的研究生、教师和科研工作者在具备神经网络基础知识后进一步了解深度学习理论和方法的入门教材或导论性参考书,有助于读者掌握深度学习的主要内容并开展相关研究。
【作者简介】
李玉鑑(鉴),北京工业大学教授,博士生导师。 华中科技大学本科毕业,中国科学院数学研究所硕士毕业,中国科学院半导体研究所博士毕业,北京邮电大学博士后出站。…
【目录】
前言
第一部分 基础理论
目 录
第1章概述 2
1.1深度学习的起源和发展 2
1.2深层网络的特点和优势 4
1.3深度学习的模型和算法 7
第2章预备知识 9
2.1矩阵运算 9
2.2概率论的基本概念 11
2.2.1概率的定义和性质 l1
2.2.2 随机变量和概率密度
函数 l2
2.2.3期望和方差. 13
2.3信息论的基本概念. 14
2.4概率图模型的基本概念 15
2.5概率有向图模型 16
2.6概率无向图模型 20
2.7部分有向无圈图模型 22
2.8条件随机场 24
2.9马尔可夫链 26
2.10概率图模型的学习 28
2.11概率图模型的推理 29
2.12马尔可夫链蒙特卡罗方法 31
2.13玻耳兹曼机的学习 32
2.14通用反向传播算法 35
2.15通用逼近定理 37
第3章受限玻耳兹曼机 38
3.1 受限玻耳兹曼机的标准
模型 38
3.2受限玻耳兹曼机的学习算法 40
3.3 受限玻耳兹曼机的变种模型 44
第4章 自编码器 48
4.1 自编码器的标准模型 48
4.2 自编码器的学习算法 50
4.3 自编码器的变种模型 53
第5章深层信念网络 57
5.1 深层信念网络的标准模型 57
5.2深层信念网络的生成学习
算法 60
5.3深层信念网络的判别学习算法 62
5.4深层信念网络的变种模型 63
第6章深层玻耳兹曼机 64
6.1 深层玻耳兹曼机的标准模型 64
6.2深层玻耳兹曼机的生成学习
算法 65
6.3 深层玻耳兹曼机的判别学习
算法 69
6.4深层玻耳兹曼机的变种模型 69
第7章和积网络 72
7.1 和积网络的标准模型 72
7.2和积网络的学习算法 74
7.3和积网络的变种模型 77
第8章卷积神经网络 78
8.1卷积神经网络的标准模型 78
8.2卷积神经网络的学习算法 81
8.3卷积神经网络的变种模型 83
第9章深层堆叠网络 一86
9.1 深层堆叠网络的标准模型 86
9.2深层堆叠网络的学习算法 87
9.3深层堆叠网络的变种模型 88
第1 0章循环神经网络 89
10.1循环神经网络的标准模型 89
10.2循环神经网络的学习算法 91
10.3循环神经网络的变种模型 92
第1 1章长短时记忆网络 94
11.1长短时记忆网络的标准模型 94
11.2长短时记忆网络的学习算法 96
11.3长短时记忆网络的变种模型 98
第12章深度学习的混合模型、
广泛应用和开发工具 102
12.1深度学习的}昆合模型 102
12.2深度学习的广泛应用 104
12.2.1 图像和视频处理 104
12.2.2语音和音频处理 106
12.2.3 自然语言处理 108
12.2.4其他应用 109
12.3深度学习的开发工具 110
第1 3章深度学习的总结、
批评和展望 114
第二部分案例分析
第14章实验背景 一118
14.1运行环境 118
14.2实验数据 118
14.3代码工具 120
第1 5章 自编码器降维案例 一121
15.1 自编码器降维程序的模块
简介 121
15.2 自编码器降维程序的运行
过程 122
15.3 自编码器降维程序的代码
分析 127
15.3.1 关键模块或函数的主要
功能 127
15.3.2主要代码分析及注释 128
15.4 自编码器降维程序的使用
技巧 138
第1 6章深层感知器识别案例 139
16.1 深层感知器识别程序的模块
简介 139
16.2深层感知器识别程序的运行
过程 140
16.3深层感知器识别程序的代码
分析 143
16.3.1 关键模块或函数的主要
功能 143
16.3.2主要代码分析及注释 l43
16.4深层感知器识别程序的使用
技巧 148
第1 7章深层信念网络生成
案例 149
17.1 深层信念网络生成程序的模块
简介 149
17.2深层信念网络生成程序的运行
过程 150
17.3深层信念网络生成程序的代码
分析 153
第18章深层信念网络分类案例163
第19章深层玻耳兹曼机识别案例202
第20章卷积神经网络识别案例221
第21章循环神经网络填充案例236
第22章长短时忆网络分类案例245
附录263
参考文献269
点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP