• 泛函分析(影印版)
  • 泛函分析(影印版)
  • 泛函分析(影印版)
  • 泛函分析(影印版)
  • 泛函分析(影印版)
  • 泛函分析(影印版)
  • 泛函分析(影印版)
  • 泛函分析(影印版)
21年品牌 40万+商家 超1.5亿件商品

泛函分析(影印版)

40 8.6折 46.4 九品

仅1件

北京海淀
认证卖家担保交易快速发货售后保障

作者[美]拉克斯 著

出版社高等教育出版社

出版时间2007-02

版次1

装帧平装

货号13-2

上书时间2025-01-01

梅见书屋

三年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九品
图书标准信息
  • 作者 [美]拉克斯 著
  • 出版社 高等教育出版社
  • 出版时间 2007-02
  • 版次 1
  • ISBN 9787040216493
  • 定价 46.40元
  • 装帧 平装
  • 开本 16开
  • 纸张 其他
  • 页数 580页
  • 正文语种 英语
  • 原版书名 Functional Analysis
  • 丛书 天元基金影印数学丛书
【内容简介】
《泛函分析(影印版)》是美国科学院院士PeterD.Lax在CotJrant数学所长期讲授泛函分析课程的教学经验基础上编写的。《泛函分析(影印版)》包括泛函分析的基本内容:Barlach空间、Hilbert空间和线性拓扑空间的基本概念和性质,线性拓扑空间中的凸集及其端点集的性质,有界线性算子的性质等。可作为本科生泛函分析课的教学内容;还包括泛函分析较深的内容:自伴算子的谱分解理论。紧算子的理论,交换Barlach代数的Gelfand理论,不变子空间的理论等。可作为研究生泛函分析课的教学内容。《泛函分析(影印版)》特别强调泛函分析与其他数学分支的联系及泛函分析理论的应用,可以使读者深刻地理解到:抽象的泛函分析理论有着丰富的数学背景。
【目录】
Foreword
1.LinearSpaces
Axiomsforlinearspaces-Infinite-dimensionalexamples-Subspace,linearspan-Quotientspace-Isomorphism-Convexsets-Extremesubsets

2.LinearMaps
2.1Algebraoflinearmaps,
Axiomsforlinearmaps-Sumsandcomposites-Invertiblelinearmaps-Nullspaceandrange-Invariantsubspaces
2.2.Indexofalinearmap,
Degeneratemaps-Pseudoinverse-IndexmProductformulafortheindex-Stabilityoftheindex

3.TheHahn,BanachTheorem
3.1Theextensiontheorem,
Positivehomogeneous,subadditivefunctionals-Extensionoflinearfunctionals-Gaugefunctionsofconvexsets
3.2GeometricHahn-Banachtheorem,
Thehyperplaneseparationtheorem
3.3ExtensionsoftheHahn-Banachtheorem,
TheAgnew-Morsetheorem-The
Bohnenblust-Sobczyk-Soukhomlinovtheorem

4.ApplicationsoftheHahn-Banachtheorem
4.1Extensionofpositivelinearfunctionals,
4.2Banachlimits.
4.3Finitelyadditiveinvariantsetfunctions,
Historicalnote,

5.NormedLinearSpaces
5.1Norms,
Normsforquotientspaces-Completenormedlinearspaces-ThespacesC,B-LpspacesandH61dersinequality-Sobolevspaces,embeddingtheorems-Separablespaces
5.2Noncompactnessoftheunitbail,
Uniformconvexity-TheMazur-Ulamtheoremonisometrics
5.3Isometrics,

6.HilbertSpace
6.1Scalarproduct,
SchwarzinequalityParallelogramidentity——Completeness,closure-e2,L
6.2Closestpointinaclosedconvexsubset,54Orthogonalcomplementofasubspace-Orthogonaldecomposition
6.3Linearfunctionals,
TheRiesz-Frechetrepresentationtheorem-Lax-Milgramlemma
6.4Linearspan,
Orthogonalprojection-Orthonormalbases,Gram-Schmidtprocess-IsometriesofaHilbertspace

7.ApplicationsofHilbertSpaceResults
7.1Radon-Nikodymtheorem,
7.2Dirichletsproblem,
UseoftheRiesz-Frechettheorem-UseoftheLax-MilgramtheoremUseoforthogonaldecomposition

8.DualsofNormedLinearSpaces
8.1Boundedlinearfunctionals,
Dualspace
8.2Extensionofboundedlinearfunctionals,
Dualcharacterizationofnorm-Dualcharacterizationofdistancefromasubspace-Dualcharacterizationoftheclosedlinearspanofaset
8.3Reflexivespaces,
ReflexivityofLp,18.4Supportfunctionofaset,
Dualcharacterizationofconvexhull-Dualcharacterizationofdistancefromaclosed,convexset

9.ApplicationsofDuality
9.1Completenessofweightedpowers,
9.2TheMuntzapproximationtheorem,
9.3Rungestheorem,
9.4Dualvariationalproblemsinfunctiontheory,
9.5ExistenceofGreensfunction,

10.WeakConvergence
10.1Uniformboundednessofweaklyconvergentsequences,101Principleofuniformboundedness-Weaklysequentiallyclosedconvexsets
10.2Weaksequentialcompactness,104Compactnessofunitballinreflexivespace
10.3Weak*convergence,105Hellystheorem

11.ApplicationsofWeakConvergence
11.1Approximationofthefunctionbycontinuousfunctions,108Toeplitzstheoremonsummability
11.2DivergenceofFourierseries,
11.3Approximatequadrature,
11.4Weakandstronganalyticityofvector-valuedfunctions,
11.5Existenceofsolutionsofpartialdifferentialequations,112Galerkinsmethod
11.6Therepresentationofanalyticfunctionswithpositiverealpart,115Hergiotz-Riesztheorem

12.TheWeakandWeak*Topologies
Comparisonwithweaksequentialtopology-Closedconvexsetsintheweaktopology——Weakcompactness-Alaoglustheorem

13.LocallyConvexTopologiesandtheKrein-MilmanTheorem
13.1Separationofpointsbylinearfunctionals,
13.2TheKrein-Milmantheorem,
13.3TheStone-Weierstrasstheorem,
13.4Choquetstheorem,

14.ExamplesofConvexSetsandTheirExtremePoints
14.1Positivefunctionals,
14.2Convexfunctions,
14.3Completelymonotonefunctions,
14.4TheoremsofCaratheodoryandBochner,
14.5AtheoremofKrein,
14.6Positiveharmonicfunctions,
14.7TheHamburgermomentproblem,
14.8G.Birkhoffsconjecture,
14.9DeFinettistheorem,
14.10Measure-preservingmappings,
Historicalnote,

15.BoundedLinearMaps
15.1Boundednessandcontinuity,
Normofaboundedlinearmap-Transpose
15.2Strongandweaktopologies,
Strongandweaksequentialconvergence
15.3Principleofuniformboundedness,
15.4Compositionofboundedmaps,
15.5Theopenmappingprinciple,
ClosedgraphtheoremHistoricalnote,

16.ExamplesofBoundedLinearMaps
16.1Boundednessofintegraloperators,
IntegraloperatorsofHilbert-Schmidttype-IntegraloperatorsofHolmgrentype
16.2TheconvexitytheoremofMarcelRiesz,
16.3Examplesofboundedintegraloperators,
TheFouriertransform,ParsevalstheoremandHausdorff-Younginequality-TheHilberttransformTheLaplacetransform-TheHilbert-Hankeltransform
……
A.Riesz-Kakutanirepresentationtheorem
B.Theoryofdistributions
C.ZornsLemma
AuthorIndex
SubjectIndex
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP