• 图深度学习从理论到实践
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

图深度学习从理论到实践

63.5 7.1折 89 全新

仅1件

河北保定
认证卖家担保交易快速发货售后保障

作者姚普 主编;张维 副主编;包勇军;朱小坤;颜伟鹏;张新静;陈晓宇;杜华;李杰;刘健;韩小涛;胡俊琪

出版社清华大学出版社

出版时间2022-05

版次1

装帧其他

货号9787302604884

上书时间2024-11-02

尚贤文化山东分店

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
图书标准信息
  • 作者 姚普 主编;张维 副主编;包勇军;朱小坤;颜伟鹏;张新静;陈晓宇;杜华;李杰;刘健;韩小涛;胡俊琪
  • 出版社 清华大学出版社
  • 出版时间 2022-05
  • 版次 1
  • ISBN 9787302604884
  • 定价 89.00元
  • 装帧 其他
  • 开本 16开
  • 纸张 胶版纸
  • 页数 148页
  • 字数 237.000千字
【内容简介】
图神经网络是人工智能的一个热点方向,从图的视角解读大数据,可以灵活建模复杂的信息交互关系,吸引大量学者的关注并在多个工业领域得到广泛应用。《图深度学习从理论到实践》由浅入深,全面介绍图神经网络的基础知识、典型模型方法和应用实践。《图深度学习从理论到实践》不仅包括一般的深度学习基础和图基础知识,还涵盖了图表示学习、图卷积、图注意力、图序列等典型图网络模型,以自研的Galileo平台为代表的图学习框架,以及图神经网络在电商推荐和流量风控方面的两个典型工业应用。
  《图深度学习从理论到实践》既适合对数据挖掘、机器学习方向以及图建模交叉方向感兴趣的高年级本科生和研究生作为教材使用,也适合互联网电商、金融风控、社交网络分析、药物研发等企业的从业者参考学习。
【目录】
第1章深度学习基础

1.1深度学习与人工智能

1.2感知机与神经网络

1.2.1单层感知机

1.2.2多层感知机

1.3前馈神经网络

1.3.1前馈神经网络的模型

1.3.2前馈神经网络的学习

1.4卷积神经网络

1.4.1图像数据的存储

1.4.2传统图像处理算子

1.4.3卷积

1.4.4池化

1.4.5填充

1.4.6步幅

1.4.7典型的卷积神经网络结构

1.4.8卷积神经网络与多层感知机的差别

1.5深度学习训练的化算法

1.6深度学习中的过拟合和欠拟合

1.7本章小结

第2章图基础

2.1图的结构

2.2图的性质

2.3图数据的存储

2.4图与拉普拉斯矩阵

2.5图神经网络简史

2.5.1挑战

2.5.2发展简史

2.6图的任务与应用

2.6.1图的任务

2.6.2图神经网络的应用

2.7本章小结

第3章图表示学习

3.1图表示学习的意义

3.2基于矩阵分解的图表示学习方法

3.3基于随机游走的图表示学习

3.3.1Word2Vec算法

3.3.2DeepWalk

3.3.3Node2Vec

3.3.4随机游走模型的优化策略

3.3.5其他随机游走方法

3.4基于深度学习的图表示学习

3.4.1局域相似度和全局相似度

3.4.2SDNE算法结构图

3.5异质图表示学习

3.6本章小结

| 图深度学习从理论到实践

目录 |

第4章图卷积神经网络

4.1图与图像的差异

4.2传统图信号处理方法

4.3谱域图卷积神经网络

4.3.1谱卷积神经网络

4.3.2切比雪夫网络

4.3.3图卷积神经网络

4.3.4谱域图卷积的特点

4.4空域图卷积神经网络

4.4.1图卷积神经网络空域理解

4.4.2GraphSAGE模型

4.5本章小结

第5章图注意力网络

5.1注意力机制

5.1.1注意力机制的变体

5.1.2注意力机制的优势

5.1.3应用场景

5.2同质图注意力网络

5.2.1图注意力层

5.2.2多头注意力

5.3异质图注意力网络

5.3.1顶点级别注意力

5.3.2语义级别注意力

5.4门控注意力网络

5.5层次图注意力网络

5.5.1视觉关系检测

5.5.2层次图注意力网络模型框架

5.6本章小结

第6章图序列神经网络

6.1传统序列神经网络

6.1.1循环神经网络

6.1.2长短期记忆神经网络

6.1.3门控循环神经网络

6.2门控序列图神经网络

6.3树与图结构的LSTM神经网络

6.3.1非线性结构的LSTM模型

6.3.2GraphLSTM模型

6.4本章小结

第7章图卷积神经网络扩展模型

7.1GCN模型的过平滑问题

7.2层采样加速GCN

7.3关系图卷积神经网络

7.3.1RGCN迭代关系

7.3.2RGCN可学习参数正则化

7.3.3RGCN应用场景

7.4本章小结

第8章图深度学习框架

8.1统一编程范式

8.1.1MPNN

8.1.2NLNN

8.1.3GN

8.2主流框架简介

8.2.1PyG

8.2.2DGL

8.2.3AliGraph

8.3图深度学习框架Galileo

8.3.1设计概要

8.3.2图引擎层

8.3.3图训练框架

8.3.4支持算法模型

8.3.5图模型实践

8.4本章小结

第9章图神经网络在推荐场景下的应用

9.1推荐系统的目的与挑战

9.2传统推荐方法

9.3图推荐算法

9.3.1基于图表示学习的推荐方法

9.3.2基于图深度学习的推荐方法

9.4电商业务推荐实践

9.5本章小结

第10章图神经网络在流量风控场景中的应用

10.1背景介绍

10.2广告流量计费模式

10.3广告作弊动机

10.4广告反作弊中的传统图算法

10.5广告反作弊图深度学习方法

10.6本章小结

参考文献
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP