偏微分方程(第四版)
¥
13
3.9折
¥
33.7
八五品
仅1件
作者陈祖墀
出版社高等教育出版社
出版时间2018-06
版次4
装帧其他
货号bi3
上书时间2025-01-07
商品详情
- 品相描述:八五品
图书标准信息
-
作者
陈祖墀
-
出版社
高等教育出版社
-
出版时间
2018-06
-
版次
4
-
ISBN
9787040494587
-
定价
33.70元
-
装帧
其他
-
开本
12开
-
纸张
胶版纸
-
页数
264页
-
字数
320千字
- 【内容简介】
-
本书首先介绍偏微分方程的古典理论和一些必要的论证,在内容、概念与方法等方面注重与现代偏微分方程知识之间的内在联系;随后对现代偏微分方程的基本知识做了介绍和论证。在介绍和论证过程中,注意各有关数学分支知识在偏微分方程中的应用。全书内容丰富,方法多样,技巧性强,并配有大量的例题与习题。这些习题难易兼顾,层次分明,其中有些习题是正文知识的扩充,给学生们提供了充分的拓展空间。
本书可作为综合性大学和高等师范院校数学类专业教材和教学参考书,还可作为一般数学工作者、物理工作者及工程技术人员的参考书。
- 【目录】
-
章 绪论
1.1 基本概念
1.1.1 定义与例子
1.1.2 叠加
1.2 定解问题
1.2.1 定解条件与定解问题
1.2.2 定解问题的适定
1.3 二阶半线方程的分类与标准型
1.3.1 多个自变量的方程
1.3.2 两个自变量的方程
1.3.3 方程化为标准型
题1
第2章 一阶拟线方程
2.1 一般理论
2.1.1 特征曲线与积分曲面
2.1.2 初值问题
2.1.3 例题
2.2 传输方程
2.2.1 齐次方程的初值问题行波解
2.2.2 非齐次传输方程
题2
第3章 波动方程
3.1 一维波动方程的初值问题
3.1.1 dalembert公式反法
3.1.2 依赖区域决定区域影响区域
3.1.3 初值问题的弱解
3.2 一维波动方程的初边值问题
3.2.1 齐次方程的初边值问题特征线法
3.2.2 齐次方程的初边值问题分离变量法
3.2.3 非齐次方程的初边值问题特征函数展开法
3.3 sturm-liouville特征值问题
3.3.1 特征函数的质
3.3.2 特征值与特征函数的存在
3.3.3 特征函数系的完备
3.3.4 例题
3.4 高维波动方程的初值问题
3.4 1球面均法kirchhoff公式
3.4.2 降维法poisson公式
3.4.3 非齐次方程duhamel
3.4.4 huygens波的弥散
3.5 能量法解的专享与稳定
3.5.1 能量等式初边值问题解的专享
3.5.2 能量不等式初边值问题解的稳定
3.5.3 初值问题解的专享
题3
第4章 热传导方程
4.1 初值问题
4.1.1 fourier变换及其质
4.1.2 解初值问题
4.1.3 解的存在
4.2 优选值及其应用
4.2.1 优选值
4.2.2 初边值问题解的专享与稳定
4.2.3 初值问题解的专享与稳定
4.2.4 例题
4.3 强优选值
题4
第5章 位势方程
5.1 基本解
5.1.1 基本解green公式
5.1.2 均值等式
5.1.3 优选小值及其应用
5.2 green函数
5.2.1 green函数的导出及其质
5.2.2 球上的green函数poisson积分公式
5.2.3 上半空间上的green函数
5.2.4 球上dirichlet问题解的存在
5.2.5 能量法
5.3 调和函数的基本质
5.3.1 逆均值质
5.3.2 harnadk不等式
5.3.3 liouville定理
5.3.4 奇点可去定理
5.3.5 正则
5.3.6 微商的局部估计
5.3.7 解析
5.3.8 例题
5.4 hopf优选值及其应用
5.4.1 hopf优选值
5.4.2 应用
5.5 位势方程的弱解
5.5.1 伴随微分算子与伴随边值问题
5.5.2 弱微商及其简单质
5.5.3 sobo1ev空间h1(ω)与h1(ω)
5.5.4 弱解的存在专享
题5
第6章 变分法与边值问题
6.1 边值问题与算子方程
6.1.1 薄膜的横振动与小位能
6.1.2 正算子与算子方程
6.1.3 正定算子弱解存在
6.2 lace算子的特征值问题
6.2.1 特征值与特征函数的存在
6.2.2 特征值与特征函数的质
题6
第7章 特征理论偏微分方程组
7.1 方程的特征理论
7.1.1 弱间断解与弱间断面
7.1.2 特征方程与特征曲面
7.2 方程组的特征理论
7.2.1 弱间断解与特征线
7.2.2 狭义双曲型方程组的标准型
7.3 双曲型方程组的cauchy问题
7.3.1 解的存在与专享
7.3.2 解的稳定
7.4 cauchy-kovalevskaja定理
7.4.1 cauchy-kovalevskaja型方程组
7.4.2 cauchy问题的化简
7.4.3 强函数
7.4.4 cauchy-kovalevskaja定理的证明
题7
第8章 广义函数与基本解
8.1 基本空间
8.1.1 引言
……
8.2 广义函数空间
8.2.1 概念与例子
8.2.2 广义函数的收敛
8.2.3 自变量的变换
8.2.4 广义函数的微商与乘子
8.2.5 广义函数的支集
8.2.6 广义函数的卷积
8.2.7 y空间上的fourier变换
8.3 基本解
8.3.1 基本解的概念
8.3.2 热传导方程及其cauchy问题的基本解
8.3.3 波动方程cauchy问题的基本解
8.3.4 调和、重调和及多调和算子的基本解
题8
索引
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价