从代数基本定理到超越数:一段经典数学的奇幻之旅(第2版))
¥
24
5.7折
¥
42
全新
仅1件
作者冯承天
出版社华东师范大学出版社有限公司
出版时间2018-04
版次2
装帧平装
上书时间2025-01-06
商品详情
- 品相描述:全新
图书标准信息
-
作者
冯承天
-
出版社
华东师范大学出版社有限公司
-
出版时间
2018-04
-
版次
2
-
ISBN
9787567587373
-
定价
42.00元
-
装帧
平装
-
开本
其他
-
页数
184页
-
字数
167千字
- 【内容简介】
-
本书分为四个部分,共计十四章,如“从自然数系到有理数系”、“无理数与实数系”、“代数、基本定理的定性说明”、“业余数学家阿尔岗的证明”、“美国数学家安凯屈的证明”、“圆周率及其元理性”、“自然对数的底数e及其元理性”、“有关多项式的一些理论”、“代数扩域、有限扩域与代数元域”等。
- 【作者简介】
-
冯承天,著有《从一元一次方程到伽罗瓦理论》、《从求解多项式方程到阿贝尔不可能性定理——细说五次方程无求根公式》;译有《对称》、《寻觅基元:探索物质的优选结构》、《怎样解题:数学思维的新方法》、《恋爱中的爱因斯坦:科学罗曼史》等。
- 【目录】
-
部分 从求解多项式方程到代数基本定理
章 从自然数系到有理数系
1.1 自然数系与一元一次方程的求解
1.2 有理数与循环小数
1.3 可公度线段
第二章 无理数与实数系
2.1 无理数和不可公度线段
2.2 黄金分割与黄金三角形
2.3 黄金矩形
2.4 兔子繁殖与黄金分割
2.5 斐波那契数列的通项公式――比奈公式
第三章 复数系与代数基本定理
3.1 二元数与复数系
3.2 数域的概念
3.3 代数基本定理
3.4 复数域是代数闭域
第二部分 代数基本定理的证明
第四章 代数基本定理的定性说明
4.1 复平面中的一些圆周曲线
4.2 多项式函数及其缠绕数
4.3 缠绕数的一个重要性质
4.4 r极大与极小时的两个极端情况
第五章 业余数学家阿尔冈的证明
5.1 考虑p(z)的最小值
5.2 计算p(z0+ζ)等
5.3 对qζ(1+ζξ)的讨论
5.4 反证法:证明了代数基本定理
第六章 美国数学家安凯奈的证明
6.1 复变函数论中的解析函数
6.2 柯西-黎曼定理
6.3 连续复函数的线积分
6.4 微积分学中的格林定理的回顾
6.5 柯西积分定理
6.6 安凯奈的思路
6.7 φ(z)的两个特殊线积分
6.8 两个不相等的积分
第三部分 圆周率π和自然对数底e,及其无理性
第七章 圆周率π及其无理性
7.1 刘徽割圆与圆周率兀
7.2 π是一个无理数
第八章 自然对数的底e及其无理性
8.1 自然对数的底e与一些重要的公式
8.2 一些重要的应用
8.3 欧拉数e是一个无理数
第四部分 有关多项式与扩域的一些理论
第九章 有关多项式的一些理论
9.1 数系S上的多项式的次数与根
9.2 数系S上的可约多项式与不可约多项式
9.3 多项式的可除性质
9.4 多项式的因式、公因式与优选公因式
9.5 多项式的互素与贝祖等式
9.6 贝祖等式的一些应用以及多项式因式分解定理
9.7 高斯引理
9.8 整系数多项式的可约性性质
9.9 艾森斯坦不可约判据
9.10 多元多项式与对称多项式
9.11 初等对称多项式
9.12 对称多项式的基本定理
9.13 由对称多项式基本定理得出的一个有重要应用的定理
9.14 关于多项式根的两个重要的推论
第十章 有关扩域的一些理论
10.1 数域的另一个例子
10.2 扩域的概念
10.3 要深人研究的一些课题
10.4 域上的代数元以及代数数
10.5 代数元的最小多项式
10.6 互素的多项式与根
10.7 代数元的次数以及代数元的共轭元
10.8 代数元域
10.9 单代数扩域
10.10 添加有限多个代数元
10.11 多次代数扩域可以用单代数扩域来实现
第五部分 代数扩域、有限扩域以及尺规作图
第十一章 代数扩域、有限扩域与代数元域
11.1 代数扩域
11.2 代数元集合A成域的域论证明
11.3 扩域可能有的基
11.4 有限扩域
11.5 维数公式
11.6 有限扩域的性质
11.7 代数元域是代数闭域
第十二章 扩域理论的一个应用――尺规作图问题
12.1 尺规作图的公理与可作点
12.2 可作公理的推论
12.3 可作数与实可作数域
12.4 所有的可作数构成域
12.5 可作数扩域
12.6 可作实数域中的直线与圆的方程
12.7 尺规作图给出的新可作点
12.8 尺规可作数的域论表示
12.9 三大古典几何问题的解决
第六部分 π以及e是超越数
第十三章 超越数的存在与刘维尔数
13.1 再谈代数元与超越元
13.2 两个有趣的例子
13.3 无穷可数集合
13.4 有理数域Q是可数的
13.5 康托尔的对角线法:实数域R是不可数的
13.6 代数数的整数多项式定义及相应的最低次数的本原多项式
13.7 代数数域是可数的
13.8 存在超越数
13.9 刘维尔定理
13.10 刘维尔数ξ是超越数
13.11 超越数的另一例
第十四章 π以及e是超越数
14.1 一次代数数的一般形式
14.2 二次实代数数的一般形式
14.3 e不是二次实代数数
14.4 e是超越数
14.5 π是超越数
14.6 超越数的一些基本定理
14.7 超越扩域、代数扩域,以及有限扩域
14.8 尾声――希尔伯特第七问题以及盖尔方德-施奈德定理
附录
附录1 比奈公式以及常系数线性递推数列
附录2 一些函数的级数展开与π的级数表示
附录3 古印度数学家马德哈瓦用正切函数计算π
附录4 用虚数单位i导出π的另两个级数表示
附录5 对称多项式基本定理中多项式g(x1,x2,…,xn)唯一性的证明
附录6 线性方程组求解简述
参考文献
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价