基本信息 书名:Calculus 定价:25.40元 作者:马继刚,邹云志,(加)艾奇逊 编 出版社:高等教育出版社 出版日期:2010-07-01 ISBN:9787040292077 字数:340000 页码:283 版次: 装帧:平装 开本:16开 商品重量: 编辑推荐 《微积分(2)》:普通高等教育“十一五” 规划教材。 内容提要 本书是英文版大学数学微积分教材,分为上、下两册。上册为单变量微积分学,包括函数、极限和连续、导数、中值定理及导数的应用以及一元函数积分学等内容;下册为多变量微积分学,包括空间解析几何及向量代数、多元函数微分学、重积分、线积分与面积分、级数及微分方程初步等内容。本书由两位国内作者和一位外籍教授共同完成,在内容体系安排上与国内主要微积分教材一致,同时也充分参考和借鉴了国外尤其是北美一些大学微积分教材的诸多特点,内容深入浅出,语言简洁通俗。本书适合作为大学本科生一学年微积分教学的教材,也可作为非英语教学的参考书。 目录 CHAPTER 5 Vecto and the Geometry of Space 5.1 Vecto 5.l.1 Concepts of Vecto 5.l.2 Linear Operatio Involving Vecto 5.1.3 Coordinate Systems in Three-Dimeional Space 5.1.4 Representing Vecto Using Coordinates 5.1.5 Lengths, Direction Angles and Projectio of Vecto 5.2 Dot Product, Cross Product and Scalar Triple Product 5.2.l The Dot Product 5.2.2 The Cross Product 5.2.3 Scalar Triple Product 5.3 Equatio of Planes and Lines 5.3.1 Planes 5.3.2 Lines 5.4 Surfaces In Space 5.4.1 Surfaces and Equatio 5.4.2 Cylinder 5.4.3 Surface of Revolution 5.4.4 Quadric Surfaces 5.5 Curves in Space 5.5.1 General Equatio of Curves in the Space 5.5.2 Parametric Equatio of Curves in the Space 5.5.3 Parametric Equatio of Surfaces in the Space 5.5.4 Projectio of Curves in the Space 5.6 Exercises 5.6.1 Vecto 5.6.2 Planes and Lines in Space 5.6.3 Surfaces and Curves in Space 5.6.4 Questio to Guide Your RevisionCHAPTER 6 Functio of Several Variables 6.1 Functio of Several Variables 6.1.1 Definition 6.1.2 Limits 6.1.3 Continuity 6.2 Partial Derivatives 6.2.1 Definition 6.2.2 Partial Derivative of Higher Order 6.3 Tota Differential 6.3.1 Definition 6.3.2 The Total Differential Appromation 6.4 The Chain Rule 6.5 Implicit Differentiation 6.5.1 Functio Defined by a Single Equation 6.5.2 Functio Defined Implicitly by System of Equatio 6.6 Applicatio of the Differential Calculus 6.6.I Tangent Lines and Normal Planes 6.6.2 Tangent Planes and Normal Lines for Surfaces 6.7 Directional Derivatives and Gradient Vecto 6.8 Mamum and Minimum 6.8.l Extrema of Functio of Several Variables 6.8.2 Lagrange Multiplie 6.9 Additional Materials 6.9.1 Taylor's Theorem for Functio of Two Variables 6.9.2 Clairaut 6.9.3 Cobb-Douglas Production Function 6.10 Exercises 6.10.1 Functio of Several Variables 6.10.2 Applicatio of Partial, Derivatives 6.10.3 Questio to Guide Your RevisionCHAPTER 7 Multiple Integrals 7.1 Definition and Properties 7.2 Iterated Integrals . 7.2.1 Iterated Integrals in Rectangular Coordinates 7.2.2 Change of Variables Formula for Double Integrals 7.3 Triple Integrals 7.3.1 Triple Integrals in Rectangular Coordinates 7.3.2 Change of Variables in Triple Integrals 7.4 The Area of a Surface 7.5 Additional Materials 7.6 Exercises 7.6.1 Double Integrals 7.6.2 Triple Integrals 7.6.3 Applicatio of Multiple Integrals 7.6.4 Questio to Guide Your RevisionCHAPTER 8 Line and SUrface Integrals 8.1 Line Integrals 8.l.1 Introduction 8.1.2 Definition of the Line Integral with ReSpect to ArcLength 8.1.3 Evaluating Line Integrals, ff(x, y)as, in R2 8.1.4 Evaluating Line Integrals, ff(x, y, z)ds, in R3 8.2 Vector Fields, Work, and Flows 8.2.1 Introduction 8.2.2 The Line Integral of a Vector Field Along a Curve C 8.2.3 Different Forms of the Line Integral Including fcF·dr 8.2.4 Examples of Line Integrals 8.3 Green's Theorem in R2 8.3.1 The Circulation-Curl Form of Green's Theorem 8.3.2 The Divergence-Flux Form of Green's Theorem 8.3.3 Generalized Green's Theorem 8.4 Path Independent Line Integrals and Coervative Fields .. 8.4.1 Introduction 8.4.2 Fundamental Results on Path Independent Line Integrals 8.5 Surface Integrals 8.5.1 Definition of Integration With Respect to Surface Area 8.5.2 Evaluation of Surface Integrals 8.6 Surface Integrals of Vector Fields 8.6.1 Definition and Properties of Flux,ffsF·NdS 8.6.2 Evaluating ffF·NdS foraSurfacez=z(x, y) 8.7 The Divergence Theorem 8.7.1 Introduction 8.7.2 Physical interpretation of the Divergence V· F(x, y, z) 8.8 Stoke's Theorem 8.9 Additional Materials 8.9.I Green 8.9.2 Gauss 8.9.3 Stokes 8.10 Exercises 8.10.1 Line Integrals 8.10.2 Surface Integrals 8.10.3 Questio to Guide Your RevisionCHAPTER 9 Infinite Sequences, Series and Appromatio 9.1 Infinite Sequences 9.2 Infinite Series 9.2.1 Definition of Infinite Serie 9.2.2 Properties of Convergent Series 9.3 Tests for Convergence 9.3.1 Series with Non Terms 9.3.2 Series with and Positive Terms 9.4 Power Series and Taylor Series 9.4.1 Power Series 9.4.2 Working with Power Series 9.4.3 Taylor Series 9.4.4 Applicatio of Power Series 9.5 Fourier Series 9.5.1 Fourier Series Expaion with Period 2π 9.5.2 Fourier Cosine and Sine Series with Period 2π 9.5.3 The Fourier Series Expaion with Period 2l 9.5.4 Fourier Series with Complex Terms 9.6 Additional Materials 9.6.1 Fourier 9.6.2 Maclaurin 9.6.3 Taylor 9.7 Exercises 9.7.1 Series with Cotant Terms 9.7.2 Power Series 9.7.3 Fourier Series 9.7.4 Questio to Guide Your RevisionCHAPTER 10 Introduction to Ordinary Differential Equation 10.1 Differential Equatio and Mathematical Models 10.2 Methods for Solving Ordinary Differential Equatio 10.2.1 Separable Equatio 10.2.2 Substitution Methods 10.2.3 Exact Differential Equatio 10.2.4 Linear Fit-Order Differential Equatio and IntegratingFacto .- 10.2.5 Reducible Second-Order Equatio 10.2.6 Linear Second-Order Differential Equatio 10.3 Other Ways of Solving Differential Equatio I0.3.1 Power Series Method 10.3.2 Direction Fields 10.3.3 Numerical Appromation: Euler's Method 10.4 Additional Materials 10.4.1 Euler 10.4.2 Bernoulli 10.4.3 The Bernoulli Family 10.4.4 Development of Calculus 10.5 Exercises 10.5.1 Introduction to Differential Equatio 10.5.2 Fit Order Differential Equation 10.5.3 Second Order Differential Equation 10.5.4 Questio to Guide Your RevisionAweReterence Books 作者介绍 编者:马继刚 邹云志 (加拿大)艾奇逊(P.W.Aitchison) 序言
以下为对购买帮助不大的评价