正版保障 假一赔十 可开发票
¥ 32.51 6.3折 ¥ 51.8 全新
库存2件
作者陈文彦,马红铝编著
出版社东南大学出版社
ISBN9787576613896
出版时间2024-05
装帧平装
开本16开
定价51.8元
货号15935560
上书时间2024-12-31
Chapter 1 Limit and Continuity
1.1 Functions
1.1.1 Mopping
1.1.2 Function of Single Vorioble
1.1.3 Elementory Functions ond Hyperbolic Functions
Exercise 1.1
1.2 The Concept of Limits and its Properties
1.2.1 Limits of Sequence
1.2.2 Limits of Functions
1.2.3 Properties of Limits
Exercise 1.2
1.3 Rules for Finding Limits
1.3.1 Operation on Limits
1.3.2 Limits Theorem
1.3.3 Two Important Special Limits
Exercise 1.3
1.4 Infinitesimal and Infinite
1.4.1 Infinitesimal
1.4.2 Infinite
1.4.3 Comparison between Infinitesimal
Exercise 1.4
1.5 Continuous Function
1.5.1 Continuity
1.5.2 Continuity of Elementary Functions
1.5.3 Discontinuity
1.5.4 Theorems about Continuous Functions on a Closed Interval
Exercise 1.5
Chapter Review Exercise
Chapter 2 Differentiation
2.1 The Derivative
2.1.1 Two Problems with one Theme
2.1.2 Definition of the Derivative
2.1.3 Geometric Interpretation of the Derivative
2.1.4 The Relationship between Differentiability and Continuity
Exercise 2.1
2.2 Finding Rules for Derivative
2.2.1 Derivative of Basic Elementary Functions
2.2.2 Derivative of Arithmetic Combination
2.2.3 The Derivative Rule for Inverses
2.2.4 Derivative of Composition
2.2.5 Implicit Differentiation
2.2.6 Parametric Differentiation
2.2.7 Related Rates of Change
Exercise 2.2
2.3 Higher-Order Derivatives
Exercise 2.3
2.4 Differentials
2.4.1 Definition of Differentials
2.4.2 Differential Rules
2.4.3 Application of Differentials in Approximation
Exercise 2.4
2.5 The Mean Value Theorem
2.5.1 Fermats Theorem
2.5.2 Rolles Theorem
2.5.3 Lagranges Theorem
2.5.4 Cauchys Theorem
Exercise 2.5
2.6 LHopitals Rule
2.6.1 Indeterminate Forms of Type 0/0
2.6.2 Indeterminate Forms of Type ∞/∞
2.6.3 Other Indeterminate Forms
Exercise 2.6
2.7 Taylors Theorem
Exercise 2.7
2.8 Applications of Derivatives
2.8.1 Monotonicity
2.8.2 Local Extreme Values
2.8.3 Global Maxima and Minima
2.8.4 Concavity
2.8.5 Asymptote
2.8.6 Graphing Functions
Exercise 2.8
Chapter Review Exercise
Chapter 3 Integration
3.1 The Definite Integral
3.1.1 Two Examples
3.1.2 Properties of Definite Integral
Exercise 3.1
3.2 The Fundamental Theorem
3.2.1 Newton-Leibniz Formula
3.2.2 The First Fundamental Theorem of Calculus
Exercise 3.2
3.3 The Indefinite Integral
3.3.1 The Definition of Indefinite Integral
3.3.2 Substitution in Indefinite Integrals
3.3.3 Indefinite Integration by Parts
3.3.4 Indefinite Integration of Rational Functions by Partial Fractions
Exercise 3.3
3.4 Techniques of Definite Integration
3.4.1 Substitution in Definite Integrals
3.4.2 Definite Integration by Parts
Exercise 3.4
3.5 Applications of Definite Integrals
3.5.1 Infinite Sum Theorem
3.5.2 Area between Two Curves
3.5.3 Volumes of Solids
3.5.4 Lengths of Plane Curves
3.5.5 Areas of Surface of Revolution
3.5.6 Mass and Center of Mass
3.5.7 Work and Fluid Force
Exercise 3.5
3.6 Improper Integrals
3.6.1 The proposition of Improper Integrals
3.6.2 Improper Integrals..Infinite Limits of Integration
3.6.3 Improper Integrals: Infinite Integrands
Exercise 3.6
3.7 Tests for Improper Integrals
3.7.1 Test for Improper Integrals: Infinite Limits of Integration
3.7.2 Test for Improper Integrals.Infinite Integrands
3.7.3 The Gamma Function
Exercise 3.7
Chapter Review Exercise
Chapter 4 Differential Equations
4.1 Differential Equations of the First Order
4.1.1 The Concept of Differential Equations
4.1.2 Equations with Variable Sepa
……
本书是为响应东南大学国际化需求,根据国家教育部非数学专业数学基础课教学指导分委员会制定的《工科类本科数学基础课程教学基本要求》,并结合东南大学多年教学改革实践经验编写的全英文教材。全书分为上、下两册,此为上册,主要内容包括极限和连续、一元函数微分学、一元函数积分学、常微分方程等。本书按国内高等数学教材体系进行编排,相比国外教材要简洁,同时兼顾美国教材重视应用、便于自学的特点。
— 没有更多了 —
以下为对购买帮助不大的评价