量子机器学习:基于Python的理论和实现
正版保障 假一赔十 可开发票
¥
46.42
6.7折
¥
69
全新
库存37件
作者姜楠,王健,张蕊编著
出版社清华大学出版社
ISBN9787302662563
出版时间2024-06
装帧平装
开本16开
定价69元
货号16138901
上书时间2024-12-30
商品详情
- 品相描述:全新
- 商品描述
-
目录
第1章绪论
1.1研究背景及意义
1.2经典机器学习
1.3量子计算
1.4量子机器学习
1.5本书组织结构
参考文献
第2章量子计算基础
2.1单量子比特
2.2张量积和多量子比特
2.3内积
2.4算子
2.5量子门
2.5.1单量子比特门
2.5.2多量子比特门
2.6量子并行性和黑箱
2.7量子纠缠
2.8量子不可克隆性
2.9量子测量
……
精彩内容
量子计算机具有天然的并行性,相比经典计算机能显著提高算法效率,是下一代智能计算的一个重要发展方向。随着量子计算机硬件的发展,通过本地或者云平台进行量子计算越来越容易,量子计算相关研究逐渐从理论走向实用。量子机器学习是机器学习和量子计算的交叉领域,它研究的是如何利用量子叠加、并行等特性降低经典机器学习算法的复杂度,以解决数据量大、数据维度高造成的训练困难等问题。
本书首先介绍量子计算的基础知识,然后将理论和实践相结合,介绍量子降维、量子分类、量子回归、量子聚类、量子神经网络及量子强化学习的算法理论,并提供部分算法的示例和代码,以帮助读者进一步理解量子机器学习算法。
本书可作为量子机器学习的入门书籍,供爱好者了解和学习量子机器学习算法;也可作为“量子机器学习”课程的教科书或参考书,供教师和学生阅读参考;还可作为对量子机器学习感兴趣的科研人员的参考书。
— 没有更多了 —
以下为对购买帮助不大的评价