• 量子力学:从原子到原子核:from atoms to nuclei
21年品牌 40万+商家 超1.5亿件商品

量子力学:从原子到原子核:from atoms to nuclei

正版保障 假一赔十 可开发票

106.18 6.7折 158 全新

库存2件

广东广州
认证卖家担保交易快速发货售后保障

作者(意)翁贝托·隆巴尔多(U. Lombardo),(意)吉安卢卡·朱利亚尼(G. Giuliani),朱一斐(Y. F. Niu)[著]

出版社科学出版社

ISBN9787030720344

出版时间2021-05

装帧平装

开本其他

定价158元

货号11656267

上书时间2024-12-27

灵感书店

三年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
目录
Contents

Chapter 1 Space-Time Symmetries and Classical Observables 1

1.1 Hamilton’s Equations 1

1.2 Space-Time Symmetries and Conservation of Dynamical Variables 2

1.3 Canonical Transformations and Space-Time Symmetries 4

1.4 Notes and References 8

1.5 Problems 8

Chapter 2 Superposition Principle 10

2.1 An Historic Experiment 10

2.2 Wave-like Behaviour of Particles 11

2.3 Particle-like Behaviour of Waves 14

2.4 The Stern-Gerlach Experiment 16

2.5 Notes and References 17

2.6 Problems 18

Chapter 3 States and Dynamical Variables 19

3.1 States of a Quantum System as Vectors of Hilbert Space 20

3.2 Observables as Operators in Hilbert Space 22

3.3 General Properties of Quantum Observables 23

3.4 Unitary Transformations 24

3.5 Notes and References 25

3.6 Problems 25

Chapter 4 Space Translations and Momentum 26

4.1 Wave Function and Position Operator 26

4.2 Space Translations 28

4.3 Momentum as a Generator of Infinitesimal Translations 29

4.4 Free Particle in a Box 30

4.5 Heisenberg Uncertainty Relations 33

4.6 Notes and References 37

4.7 Problems 37

Chapter 5 Elementary Phenomena 38

5.1 Double-Slit Interference 38

5.2 Diffraction Grating 40

5.3 Double-Layer Reflection 40

5.4 Scattering of Identical Particles 41

5.5 Notes and References 43

5.6 Problems 44

Chapter 6 Space Rotations and Angular Momentum 45

6.1 Space Rotations 45

6.2 Orbital Angular Momentum as Generator of Infinitesimal Rotations 46

6.3 Properties of the Angular Momentum 47

6.4 Orbital Angular Momentum in Polar Coordinates 50

6.5 Reflection of Axes and Parity 52

6.6 Spin 53

6.7 The Rigid Rotor 55

6.8 Complement to Sec.6.1: Infinitesimal Space Rotations 56

6.9 Notes and References 57

6.10 Problems 58

Chapter 7 Time Translations and Hamiltonian 59

7.1 Time Evolution Operator 59

7.2 Equations of Motion 61

7.3 Stationary Schr.dinger Equation 63

7.3.1 Schr.dinger Equation for Potential Wells 63

7.3.2 Attractive Well: V0 < 0 65

7.3.3 Repulsive Well: V0 > 0 67

7.3.4 Potential Barrier: 0 < E < V0 68

7.3.5 Potential Barrier: E > V0 > 0 69

7.4 Problems 70

Chapter 8 Harmonic Oscillations 71

8.1 Quantum Harmonic Oscillator 72

8.1.1 Eigenfunctions of the Harmonic Oscillator 73

8.2 Vibrations of a Crystal Lattice 74

8.2.1 Small Oscillations in Classical Approach 74

8.2.2 Small Oscillations in Quantum Approach 79

8.3 Three-Dimensional Harmonic Oscillator 79

8.4 Notes and References 81

8.5 Problems 81

Chapter 9 Approximations to Schr.dinger’s Equation 83

9.1 Perturbation Theory 83

9.1.1 Non-Degenerate Case 83

9.1.2 Degenerate Case 84

9.2 Variational Approach 86

9.3 Perturbation vs. Variational Approximations for 4He 87

9.3.1 Perturbation Method 88

9.3.2 Variational Estimate 89

9.4 Problems 90

Chapter 10 Time-Dependent Equations of Motion 92

10.1 Heisenberg Representation 92

10.2 Two-Level Quantum System 93

10.2.1 Unperturbed Hamiltonian 93

10.2.2 Perturbation Potential 94

10.2.3 Time-Dependent Hamiltonian 95

10.3 Relationship between Symmetries and Conservation Theorems 96

10.4 Classical Limit: Ehrenfest Theorem 97

10.5 Particle Detection in Scattering Processes 99

10.6 Problems 102

Chapter 11 Time-Dependent Perturbation Theory 104

11.1 Interaction Representation 104

11.2 Electron Transitions in Atoms 106

11.3 Dipole Approximation 108

11.4 Slow vs. Fast Processes 109

11.5 Complement to Sec.11.2: Interaction of Charged Particles with the Electromagnetic Field 112

11.6 Notes and References 113

11.7 Problems 113

Chapter 12 Two-Body Problem: Bound States 115

12.1 Central Potential 115

12.2 Hydrogen Atom 118

12.3 Isospin 121

12.4 Ground State of the Deuteron 124

12.5 Complement to Sec.12.4: Tensor Interaction 126

12.6 Notes and References 127

12.7 Problems 127

Chapter 13 Two-Body Problem: Scattering States 129

13.1 Lippmann-Schwinger Equation 129

13.2 Asymptotic Form of the Continuum States 130

13.3 Solving the Lippmann-Schwinger Equation 133

13.4 Elastic Scattering Cross Section 134

13.4.1 Born Approximation for the Elastic Scattering Cross Section 135

13.4.2 Nuclear and Coulomb Potential 136

13.4.3 Electron Scattering and Nuclear Density 138

13.5 Partial-Wave Analysis 140

13.6 Low-Energy Scattering and Bound States 141

13.7 Nuclear Interaction from Nucleon-Nucleon Scattering 147

13.8 Notes and References 150

13.9 Problems 151

Chapter 14 Many-Body Systems 152

14.1 Systems of Identical Particles 152

14.2 The Hartree-Fock Approximation 155

14.3 Atomic Structure 161

14.4 Nuclear Structure 166

14.4.1 The Nuclear Shell Model 166

14.4.2 Liquid Drop Model and Nuclear Matter 170

14.4.3 Microscopic Approaches 174

14.5 Complement to Sec.14.2: Second Quantization 177

14.6 Complement to Sec.14.4.1: Isotropic 3-Dimensional Harmonic Oscillator 179

14.7 Notes and References 182

14.8 Problems 182

Chapter 15 The Dirac Equation 184

15.1 The Klein-Gordon Equation 184

15.2 Dirac’s Equation 186

15.2.1 Diagonalization of the Hamiltonian 187

15.2.2 The Spin Variable 188

15.3 Covariant Form of the Dirac Equation 189

15.4 The Spin-Orbit Interaction 191

15.5 Complement to Sec.15.4: Semi-Classical Hamiltonian 193

15.6 Notes and References 194

15.7 Problems 194

Chapter 16 Homogeneous Many-Body Systems 195

16.1 Gibbs Statistical Approach 195

16.2 Time Average and Statistical Average 196

16.3 Microcanonical Ensemble 197

16.4 Connection with Thermodynamics 199

16.5 Grand Canonical Ensemble 200

16.6 Finite-Temperature Ideal Fermi Gas 202

16.7 Fermi Systems in Astrophysics 205

16.7.1 Degenerate Electron Gas in White Dwarf Stars 205

16.7.2 Neutron Stars 207

16.8 Finite-Temperature Ideal Bose Gas: Black Body Radiation 210

16.8.1 Spectral Decomposition of the Electromagnetic Field 210

16.8.2 Quantization of the Electromagnetic Field: Photon Gas 211

16.8.3 Black-Body Radiation from the Classical Point of View 213

16.9 Complement to Sec.16.5: Grand Canonical Probability 214

16.10 Complement to Sec.16.7: Newtonian Hydrostatic Equilibrium 215

16.11 Notes and References 216

16.12 Problems 217

Chapter 17 Semi-Classical Limit 218

17.1 Wigner and Weyl Transforms 218

17.2 Ehrenfest Theorem Revisited 220

17.3 Semiclassical Limit of the HF Approximation 221

17.4 Complement to Sec.17.2 223

17.5 Notes and References 224

17.6 Problems 225

Chapter 18 Collective Modes in Atomic and Nuclear Systems 226

18.1 Collective Modes in Fermi Systems 226

18.1.1 Quantum First Sound 227

18.1.2 Zero Sound 228

18.1.3 Nuclear Collective Modes 230

18.2 Notes and References 237

18.3 Problems 237

Appendix A Vectors and Operators 239

A.1 Multidimensional Vector Spaces 239

A.2 Hilbert Space H 240

A.3 Operators 241

A.3.1 Properties of Operators 241

A.3.2 Projection Operators 242

A.4 Eigenvalue Problem 243

A.5 Representation of Vectors and Operators 243

A.5.1 Matrix Representation 243

A.5.2 Matrix Representation of Vectors and Operators 244

A.5.3 Eigenvalue Problem in Matrix Form 245

A.6 Continuous Spectrum and Dirac δ-function 245

Appendix B Spe Functions in Quantum Mechanics 247

B.1 Orbital Angular Momentum in Polar Coordinates 247

B.2 Spherical Harmonics and Legendre Polynomials 248

B.3 Spherical Bessel Functions 250

B.4 Hermite Polynomials 252

B.5 Laguerre Polynomials 253

Appendix C Coupling of Angular Momenta 254

C.1 Clebsch-Gordan Coefficients 254

C.2 Tensor Operators: Wigner-Eckart Theorem 256

C.3 Projection Theorem 258

Appendix D Mathematical Complements 261

D.1 Fourier Transform and Convolution Theorem 261

D.2 The Green Function Formalism 262

D.3 The Residue Theorem 263

Physical Constants 266

Units of Measurement 268

Bibliography 269

Subject Index 270

内容摘要
本书以量子力学与经典力学的对应为线索,通过时空对称性与能量、动量和角动量守恒之间的紧密联系这一普适关系探讨量子力学与经典力学的对应关系,并实现该书内容的组织逻辑。通过与经典哈密顿量力学作类比,由时空变换的生成元引入力学量,帮助同学更深入地理解经典概念到量子概念的过渡。书中介绍了量子力学的基本原理及其在物理各个分支领域的应用,如光学、原子物理、固体物理、原子核物理和核天体物理,试图通过具体应用举例来引导学生更深刻地理解量子力学原理。该书的一个特色是针对核物理专业的学生做了针对性的介绍,讲述了量子力学的相对论拓展,引入了处理量子多体系统的方法和近似,包括从有限多体系统到均匀无限大系统,并以原子核和中子星为例进行讲解,给出计算实例便于读者理解。该书还设计了练习题,并可提供解答提示和相关数值程序。

精彩内容
本书以量子力学与经典力学的对应为线索,通过时空对称性与能量、动量和角动量守恒之间的紧密联系这一普适关系探讨量子力学与经典力学的对应关系,并实现该书内容的组织逻辑。通过与经典哈密顿量力学作类比,由时空变换的生成元引入力学量,帮助同学更深入地理解经典概念到量子概念的过渡。书中介绍了量子力学的基本原理及其在物理各个分支领域的应用,如光学、原子物理、固体物理、原子核物理和核天体物理,试图通过具体应用举例来引导学生更深刻地理解量子力学原理。该书的一个特色是针对核物理专业的学生做了针对性的介绍,讲述了量子力学的相对论拓展,引入了处理量子多体系统的方法和近似,包括从有限多体系统到均匀无限大系统,并以原子核和中子星为例进行讲解,给出计算实例便于读者理解。该书还设计了练习题,并可提供解答提示和相关数值程序。

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP