• 数据科学项目管理实践
21年品牌 40万+商家 超1.5亿件商品

数据科学项目管理实践

正版保障 假一赔十 可开发票

30.88 4.5折 68 全新

库存86件

广东广州
认证卖家担保交易快速发货售后保障

作者[俄]基里尔·杜博尔科夫

出版社中国电力出版社有限责任公司

ISBN9787519869762

出版时间2022-11

装帧平装

开本16开

定价68元

货号11954262

上书时间2024-12-26

灵感书店

三年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
目录
目录

前言

第一部分 什 么 是 数 据 科 学?

第 1 章 数据科学概论· 2

1.1 人工智能定义 3

1.1.1 数据科学的定义 3

1.1.2 数据科学的影响 4

1.1.3 数据科学的局限 4

1.2 机器学习导论 5

1.2.1 机器学习模型提供的决策和洞见· 5

1.2.2 机器学习模型需要的数据 6

1.2.3 机器学习的起源 7

1.2.4 机器学习剖析 7

1.2.5 机器学习可解决的任务类型 8

1.3 深度学习导论 · 11

1.3.1 自然语言理解应用· 12

1.3.2 探究计算机视觉 13

1.4 深度学习用例 · 16

1.5 因果推理导论 · 16

1.6 本章小结 · 19

第 2 章 机器学习模型测试 20

2.1 离线模型测试 · 20

2.1.1 模型误差 20

2.1.2 误差分解 21

2.1.3 技术度量指标 26

2.1.4 业务度量指标 32

2.2 在线模型测试 · 322.2.1 在线测试的意义 · 32

2.2.2 在线数据测试· 36

2.3 本章小结 36

第 3 章 人工智能基础 37

3.1 理解数学优化 37

3.2 理解统计学 41

3.2.1 频率学派的概率 · 42

3.2.2 条件概率 42

3.2.3 关于概率的贝叶斯观点 · 44

3.2.4 分布 44

3.2.5 利用数据样本计算统计量 · 45

3.2.6 统计建模 46

3.3 机器如何学习 48

3.4 探究机器学习 52

3.4.1 机器学习简介· 52

3.4.2 线性模型 53

3.4.3 分类与回归树· 53

3.4.4 集成模型 54

3.4.5 聚类模型 56

3.5 探究深度学习 58

3.5.1 建立神经网络· 61

3.5.2 计算机视觉应用 · 62

3.5.3 自然语言处理应用 · 64

3.6 本章小结 69

第二部分 项目团队的组建与维持

第 4 章 理想的数据科学团队 71

4.1 数据科学团队的角色 71

4.2 探究数据科学团队的角色及其职责 74

4.2.1 案例 1:应用机器学习防止银行诈骗 74

4.2.2 案例 2:机器学习在零售公司的应用 75

4.2.3 数据科学家的关键技能 · 774.2.4 数据工程师的关键技能 · 78

4.2.5 数据科学项目经理的关键技能 · 79

4.2.6 开发团队的支持 80

4.3 本章小结 · 80

第 5 章 数据科学团队招聘面试 81

5.1 技术招聘面试的通病 · 81

5.1.1 发现不需要的候选者· 82

5.1.2 明确面试目的 84

5.2 将价值和伦理引入面试 · 85

5.3 面试设计 · 86

5.3.1 设计测试作业 87

5.3.2 不同数据科学角色的面试 · 90

5.4 本章小结 · 92

第 6 章 组建数据科学团队 93

6.1 铸就团队灵魂( Zen,禅) 93

6.2 领导力和人员管理 · 96

6.2.1 以身作则 96

6.2.2 发挥情境领导力( situational leadership) 97

6.2.3 明确任务 99

6.2.4 感情移入( empathy,共情) 100

6.3 培养成长型思维 101

6.3.1 团队整体的成长 101

6.3.2 面向个体成长的持续学习 102

6.3.3 提供更多的学习机会 103

6.3.4 利用绩效评价帮助员工成长 104

6.4 案例:创建数据科学部门 106

6.5 本章小结 108

第三部分 数据科学项目的管理

第 7 章 创新管理· 110

7.1 理解创新 110

7.2 大型组织为何屡屡失败? 1117.2.1 市场的游戏规则 111

7.2.2 开拓新市场 112

7.3 探究创新管理 112

7.3.1 案例: MedVision 的创新周期· 114

7.3.2 集成创新 · 116

7.4 销售、营销、团队领导方式以及技术 117

7.5 大公司的创新管理 119

7.5.1 大公司的创新管理简介 119

7.5.2 案例:零售业务的数据科学项目 120

7.6 初创公司的创新管理 121

7.7 发现项目想法 122

7.7.1 从业务发现想法 122

7.7.2 从数据发现想法 123

7.8 本章小结 127

第 8 章 管理数据科学项目 128

8.1 理解数据科学项目的失败 128

8.1.1 数据科学项目失败的常见原因 128

8.1.2 数据科学管理方法 129

8.2 探究数据科学项目全生命周期 130

8.2.1 业务理解 · 130

8.2.2 数据理解 · 130

8.2.3 数据准备 · 131

8.2.4 建模 · 132

8.2.5 评价 · 133

8.2.6 部署 · 133

8.3 项目管理方法论的选择 134

8.3.1 瀑布式管理 134

8.3.2 敏捷 · 135

8.3.3 Kanban · 135

8.3.4 Scrum 137

8.4 选择适合项目的方法论 139

8.4.1 开展颠覆性创新 139

8.4.2 准备测试过的解决方案 1398.4.3 为客户量身定制项目 139

8.5 估测数据科学项目 140

8.5.1 数据科学项目估测简介 140

8.5.2 学会估测时间和成本 141

8.6 明确估测过程的目标 144

8.7 本章小结 144

第 9 章 数据科学项目的常见陷阱· 145

9.1 规避数据科学项目的常见风险 145

9.2 推进研究项目 146

9.3 实施原型和最简可行产品项目 147

9.3.1 原型和最简可行产品开发简介 147

9.3.2 案例:咨询公司的最简可行产品· 148

9.4 应对实用型数据科学系统的风险 149

9.4.1 实用型数据科学系统风险及其解决方法 · 149

9.4.2 案例:将销售预测系统投入应用· 151

9.5 本章小结 152

第 10 章 创造产品与提升可重用性 153

10.1 产品思维 153

10.2 确定项目所处阶段 154

10.2.1 项目类型和所处阶段的划分 154

10.2.2 案例:服务平台调度系统的开发 155

10.3 提高可重用性 156

10.4 寻找和开发产品 157

10.4.1 寻找和开发产品简介 · 157

10.4.2 隐私问题· 158

10.5 本章小结 158

第四部分 开发基础环境的构建

第 11 章 实施 ModelOps· 160

11.1 认识 ModelOps 160

11.2 了解 DevOps 161

11.2.1 数据科学项目基础系统的特殊需求 16111.2.2 数据科学交付流程· 162

11.3 管理代码版本和质量 · 163

11.4 存储数据和代码 · 164

11.4.1 数据跟踪与版本化· 165

11.4.2 实际的数据存储· 165

11.5 管理环境 · 167

11.6 追踪实验 · 168

11.7 自动测试的重要性 · 170

11.8 代码打包 · 171

11.9 模型的持续训练 · 172

11.10 案例:开发预测维护系统的 ModelOps · 173

11.11 项目的动力源 177

11.12 本章小结 179

第 12 章 建立技术栈 180

12.1 定义技术栈的要素 · 180

12.2 核心技术与项目专用技术的选择 · 183

12.3 比较工具与产品 · 184

12.3.1 如何比较不同的工具与产品 · 184

12.3.2 案例:物流公司的需求预测 · 185

12.4 本章小结 · 187

第 13 章 结论 188

13.1 增进知识 · 189

13.2 本章小结

内容摘要
本书介绍了克服日常面临的各种挑战的实践知识,以及各种数据科学解决方案,主要包括数据科学概论,机器学习模型测试,人工智能基础,理想的数据科学团队, 数据科学团队招聘面试,组建数据科学团队,创新管理,管理数据科学项目,数据科学项目的常见陷阱,创造产品与提升可重用性,实施 ModelOps,建立技术栈和结论。

本书的目标读者是希望有效地引入数据科学工作流程以提升组织效率、改进业务的数据科学家、数据分析人员和项目主管。了解一些数据科学的基本概念有助于本书的阅读。

精彩内容
本书介绍了克服日常面临的各种挑战的实践知识,以及各种数据科学解决方案,主要包括数据科学概论,机器学习模型测试,人工智能基础,理想的数据科学团队, 数据科学团队招聘面试,组建数据科学团队,创新管理,管理数据科学项目,数据科学项目的常见陷阱,创造产品与提升可重用性,实施 ModelOps,建立技术栈和结论。

本书的目标读者是希望有效地引入数据科学工作流程以提升组织效率、改进业务的数据科学家、数据分析人员和项目主管。

了解一些数据科学的基本概念有助于本书的阅读。

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP