• 现代信号分析和处理
21年品牌 40万+商家 超1.5亿件商品

现代信号分析和处理

正版保障 假一赔十 可开发票

62.09 6.3折 99 全新

库存7件

广东广州
认证卖家担保交易快速发货售后保障

作者张旭东编著

出版社清华大学出版社

ISBN9787302486008

出版时间2018-08

装帧平装

开本16开

定价99元

货号9246306

上书时间2024-12-22

灵感书店

三年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
目录

?
?
?
?
?
?
目录
?
第0章绪论
?
0.1本书的主要内容
?
0.2现代信号处理的几个应用实例
?
0.3对信号处理的一些基本问题的讨论
?
0.4一个简短的历史概述
?
卷一信号处理的统计方法
?
第1章随机信号基础及模型
?
1.1随机信号基础
?
1.1.1随机过程的概率密度函数表示
?
1.1.2随机过程的基本特征
?
1.2随机信号向量的矩阵特征
?
1.2.1自相关矩阵
?
1.2.2互相关矩阵
?
1.2.3向量信号相关阵
?
1.3常见信号实例
?
1.3.1独立同分布和白噪声
?
1.3.2复正弦加噪声
?
1.3.3实高斯过程
?
*1.3.4复高斯过程
?
*1.3.5混合高斯过程
?
1.3.6高斯马尔可夫过程
?
1.4随机信号的展开
?
1.4.1随机信号的正交展开
?
1.4.2基向量集的正交化
?
1.4.3KL变换
?
*1.4.4主分量分析
?
1.4.5由正交随机序列集表示一个随机信号
?
1.5随机信号的功率谱密度
?
1.5.1功率谱密度的定义和性质
?
1.5.2随机信号通过线性系统
?
1.5.3连续随机信号与离散随机信号的关系
?
1.6随机信号的有理分式模型
?
1.6.1谱分解定理
?
1.6.2随机信号的ARMA模型
?
1.6.3随机信号表示的进一步讨论
?
1.6.4自相关与模型参数的关系
?
*1.6.5ARMA模型的扩展——ARIMA模型
?
1.7小结与进一步阅读
?
习题
?
参考文献
?
第2章估计理论基础
?
2.1基本经典估计问题
?
2.1.1经典估计基本概念和性能参数
?
2.1.2几个常用估计量
?
2.2克拉美罗下界
?
2.3似然估计(MLE)
?
2.4贝叶斯估计
?
2.4.1均方误差贝叶斯估计
?
2.4.2贝叶斯估计的其他形式
?
2.5线性贝叶斯估计器
?
2.6二乘估计
?
2.6.1加权二乘估计
?
2.6.2正则化二乘估计
?
2.6.3复数据的LS估计
?
*2.7EM算法
?
2.7.1EM算法的特例和扩展
?
2.7.2EM算法解高斯混合模型
?
2.8小结与进一步阅读
?
习题
?
参考文献
?
第3章滤波器
?
3.1维纳滤波
?
3.1.1实际问题中的维纳滤波
?
3.1.2从估计理论观点导出维纳滤波
?
3.1.3维纳滤波器正交原理
?
3.1.4FIR维纳滤波器
?
3.1.5IIR维纳滤波器
?
3.1.6应用例——通信系统的线性均衡器
?
*3.2阵列波束形成与维纳滤波
?
3.2.1阵列波束形成基础知识
?
3.2.2维纳滤波与波束形成
?
3.2.3MVDR波束形成器
?
3.3线性预测
?
3.3.1前向线性预测
?
3.3.2后向线性预测
?
3.3.3LevinsonDurbin算法
?
3.3.4格型预测误差滤波器
?
3.3.5预测误差滤波器的性质
?
*3.4格型滤波器结构的推广
?
3.4.1AR模型和全极点格型
?
3.4.2Cholesky分解
?
3.4.3维纳滤波器的格型结构
?
3.5二乘滤波
?
3.5.1LS滤波的边界问题
?
3.5.2LS的正交性原理
?
3.5.3二乘滤波的几个性质
?
3.5.4二乘的线性预测
?
3.5.5正则二乘滤波
?
*3.5.6基于非线性函数的二乘滤波
?
3.6奇异值分解计算LS问题
?
*3.7总体二乘(TLS)
?
3.8小结和进一步阅读
?
第3章附录连续时间维纳滤波
?
习题
?
参考文献
?
第4章卡尔曼滤波及其扩展
?
4.1标量卡尔曼滤波
?
4.1.1标量随机状态的递推估计
?
4.1.2与维纳滤波器的比较
?
4.2向量形式标准卡尔曼滤波
?
4.2.1向量卡尔曼滤波模型
?
4.2.2向量卡尔曼滤波推导
?
*4.3卡尔曼滤波器的一些变化形式
?
4.3.1针对状态方程不同形式的卡尔曼滤波器
?
4.3.2卡尔曼预测器
?
4.3.3卡尔曼信息滤波器
?
4.3.4稳态卡尔曼滤波器
?
4.3.5卡尔曼QR分解滤波器
?
4.3.6简单无激励动力系统
?
4.4卡尔曼非线性滤波之一: 扩展卡尔曼滤波(EKF)
?
*4.5卡尔曼非线性滤波之二: 无迹卡尔曼滤波
?
4.5.1无迹变换(UT)
?
4.5.2加性噪声非线性系统的UKF
?
4.5.3一般非线性系统的UKF
?
4.6贝叶斯滤波
?
*4.7粒子滤波
?
4.7.1蒙特卡罗模拟与序列重要性采样
?
4.7.2粒子滤波算法
?
4.7.3粒子滤波的改进——高斯粒子滤波
?
4.8本章小结和进一步阅读
?
习题
?
参考文献
?
第5章自适应滤波器
?
5.1自适应滤波的分类和应用
?
5.2下降法
?
5.3LMS自适应滤波算法
?
5.3.1LMS算法
?
5.3.2LMS算法的收敛性分析
?
5.3.3一些改进的LMS算法
?
*5.3.4稀疏LMS算法
?
*5.3.5仿射投影算法
?
5.4递推LS算法(RLS)
?
5.4.1基本RLS算法
?
5.4.2RLS算法的收敛性分析
?
5.5LMS和RLS算法对自适应均衡器的仿真结果
?
5.6投影算子递推和LS格型滤波器
?
5.6.1用向量空间算子方法表示LS滤波器
?
5.6.2投影算子的阶递推公式
?
5.6.3投影算子的时间递推公式
?
5.6.4二乘格型(LSL)算法
?
*5.7快速横向LS自适应滤波算法(FTF)
?
5.7.14个基本滤波器
?
5.7.2横向滤波器算子的更新
?
5.7.3FTF算法
?
*5.8QR分解RLS算法
?
5.8.1LDU分解RLS算法
?
5.8.2RLS和卡尔曼滤波的对应关系
?
*5.9IIR结构的自适应滤波器
?
*5.10非线性自适应滤波举例
?
5.11自适应滤波器的应用举例
?
5.11.1自适应均衡再讨论
?
5.11.2自适应干扰对消的应用
?
*5.11.3自适应波束形成算法
?
*5.12无期望响应的自适应滤波算法举例: 盲均衡
?
5.12.1恒模算法(CMA)
?
5.12.2一类盲均衡算法(Bussgang算法)
?
5.12.3盲反卷算法介绍
?
5.13小结和进一步阅读
?
习题
?
参考文献
?
?
第6章功率谱估计
?
6.1经典谱估计方法
?
6.1.1周期图方法
?
6.1.2改进周期图
?
6.1.3BlackmanTukey方法
?
6.2AR模型法谱估计
?
6.2.1熵谱估计
?
6.2.2AR模型谱估计的协方差方法
?
6.2.3改进协方差方法
?
6.2.4自相关方法
?
6.2.5Burg算法
?
6.2.6AR模型谱的进一步讨论
?
6.3系统模型阶选择问题
?
6.4MA模型谱估计
?
6.5ARMA模型谱估计
?
6.5.1改进YuleWalker方程方法
?
*6.5.2Akaike的非线性迭代算法
?
*6.6方差谱估计
?
6.7利用特征空间的频率估计
?
6.7.1Pisarenko谱分解
?
6.7.2MUSIC方法
?
6.7.3模型阶估计
?
*6.8ESPRIT算法
?
6.8.1基本ESPRIT算法
?
6.8.2LSESPRIT和TLSESPRIT算法
?
*6.9空间线性阵列的DOA估计
?
6.10功率谱估计的一些实验结果
?
6.10.1经典方法和AR模型法对不同信号类型的仿真比较
?
6.10.2谐波估计的实验结果
?
6.11小结和进一步阅读
?
习题
?
参考文献
?
第7章超出2阶平稳统计的信号特征与应用
?
7.1信号的高阶统计量和高阶谱
?
7.1.1高阶累积量和高阶矩的定义
?
7.1.2高阶累积量的若干数学性质
?
7.1.3高阶谱的定义
?
7.1.4线性非高斯过程的高阶谱
?
7.1.5非线性过程的高阶谱
?
*7.2高阶统计量和高阶谱的估计
?
7.2.1高阶统计量的估计
?
7.2.2高阶谱的BR估计
?
7.2.3高阶谱的间接估计方法
?
7.2.4高阶谱的应用
?
*7.3周期平稳信号的谱相关分析
?
7.3.1周期平稳信号的概念
?
7.3.2周期平稳信号的谱相关函数
?
7.3.3通信工程中常见已调信号的谱相关函数
?
7.3.4谱相关函数的估计
?
*7.4随机信号的熵特征
?
7.4.1熵的定义和基本性质
?
7.4.2KL散度、互信息和负熵
?
7.4.3熵的逼近计算
?
7.5本章小结和进一步阅读
?
习题
?
参考文献
?
第8章信号处理的隐变量分析
?
8.1在线主分量分析
?
8.1.1广义Hebian算法
?
8.1.2投影近似子空间跟踪算法——PAST
?
8.2信号向量的白化和正交化
?
8.2.1信号向量的白化
?
8.2.2向量集的正交化
?
8.3盲源分离问题的描述
?
8.4独立分量分析——ICA
?
8.4.1独立分量分析的基本原理和准则
?
8.4.2不动点算法——FastICA
?
8.4.3自然梯度算法
?
8.4.4非线性PCA算法
?
*8.5利用2阶统计的BSS
?
8.5.1SOBI算法
?
8.5.2其他2阶统计盲源分离算法简介
?
*8.6卷积混合盲源分离
?
8.6.1卷积混合模型
?
8.6.2卷积混合的分离模型
?
8.6.3卷积混合的分离算法简介
?
*8.7其他BSS方法简介
?
*8.8应用和仿真实验举例
?
8.9本章小结和进一步阅读
?
习题
?
参考文献
?
卷二时频分析和稀疏表示
?
第9章时频分析方法
?
9.1时频分析的预备知识
?
9.1.1傅里叶变换及其局限性
?
9.1.2时频分析的几个基本概念
?
9.1.3框架和Reisz基
?
9.2短时傅里叶变换
?
9.2.1STFT的定义和性质
?
*9.2.2STFT的数值计算
?
9.3Gabor展开
?
9.3.1连续Gabor展开
?
9.3.2周期离散Gabor展开
?
*9.4分数傅里叶变换
?
9.4.1FRFT的定义和性质
?
9.4.2FRFT的数值计算
?
9.4.3FRFT的应用简述
?
9.5WignerVille分布
?
9.5.1连续WignerVille分布的定义和性质
?
9.5.2WVD的一些实例及问题
?
9.5.3通过离散信号计算WVD
?
*9.5.4RadonWigner变换
?
*9.6一般时频分布: Cohen类
?
9.6.1模糊函数
?
9.6.2Cohen类的定义与实例
?
*9.7模糊函数再讨论
?
9.8小结和进一步阅读
?
习题
?
参考文献
?
第10章小波变换原理及应用概论
?
10.1连续小波变换
?
10.1.1CWT的定义
?
10.1.2CWT的性质
?
10.1.3几个小波实例
?
10.1.4Lipschitz指数与小波变换
?
10.2尺度和位移离散化的小波变换
?
10.3多分辨分析和正交小波基
?
10.3.1多分辨分析的概念
?
10.3.2小波基的构造
?
10.3.3离散小波变换的Mallat算法
?
10.4双正交小波变换
?
10.5小波基实例
?
10.5.1Daubechies紧支小波
?
10.5.2双正交小波基实例
?
10.6多维空间小波变换
?
10.6.1二维可分小波变换
?
10.6.2数字图像的小波变换模型
?
10.7小波包分解
?
*10.8离散小波变换中的边界问题
?
*10.9提升和整数小波变换
?
10.9.1提升小波变换的基本方法
?
10.9.2构造小波基的提升方法
?
10.9.3几个提升实现的小波变换的例子
?
10.9.4整数小波变换
?
*10.10小波变换应用实例: 图像压缩
?
10.10.1图像小波变换域的树表示和编码
?
10.10.2嵌入式小波零树编码
?
*10.11小波变换的其他应用
?
10.11.1小波消噪
?
10.11.2其他应用简介
?
10.12小结和进一步阅读
?
习题
?
第10章附录子带编码
?
参考文献
?
*第11章信号的稀疏表示与压缩感知
?
11.1信号稀疏表示的数学基础
?
11.1.1凸集和凸函数
?
11.1.2范数
?
11.1.3矩阵的零空间和稀疏度
?
11.2信号的稀疏模型实例
?
11.2.1压缩感知问题
?
11.2.2套索回归问题——LASSO
?
11.2.3不同稀疏问题的比较
?
11.3信号的稀疏模型表示
?
11.4稀疏恢复的基本理论
?
11.4.1(P0)解的性
?
11.4.2(P1)解的性
?
11.4.3(Pε1)问题的解
?
11.5压缩感知与感知矩阵
?
11.6稀疏恢复算法介绍
?
11.6.1贪婪算法
?
11.6.2LAR算法
?
11.6.3Lasso的循环坐标下降算法
?
11.6.4近邻方法和迭代收缩算法
?
11.6.5迭代加权二乘算法——IRLS
?
11.6.6在线稀疏恢复算法
?
11.7信号稀疏恢复的几个应用实例
?
11.8本章小结和进一步阅读
?
习题
?
参考文献
?
附录A矩阵论基础
?
附录B优化方法概要
?
缩写词
?
索引
?

主编推荐
本书涵盖了现代信号处理中*重要的课题,基础部分有随机信号模型和统计推断基础;信号统计处理包括了:维纳滤波、*小二乘滤波、卡尔曼滤波、粒子滤波、自适应滤波、现代谱估计、高阶统计与盲源处理;时频分析和稀疏表示部分包括:小波变换、Gabor展开、分数傅里叶变换、WVD和Cohen类,信号的稀疏表示与压缩传感。内容完整,精心设计了许多实例帮助读者理解比较繁复的理论算法,大大增加了本书的可读性,对许多重要问题给出细致的梳理,逻辑性强,可读性强。在基础性和前沿性方面做了很努力的平衡,既细致地讨论了重要的基础知识,又反映了信号处理中多个前沿课题。 

精彩内容
本书系统和深入地介绍了现代数字信号分析和处理的基础和一些广泛应用的算法。前4章介绍了研究和学习现代数字信号处理的重要基础,包括随机信号模型、估计理论概要、*滤波器理论、*小二乘滤波和卡尔曼滤波,这些内容是信号处理统计方法的基础性知识;第2部分的4章详细讨论了几类广泛应用的典型算法,包括自适应滤波算法、功率谱估计算法、高阶统计量和循环统计量、信号的盲源分离;第3部分包括时频分析、小波变换原理及应用和信号的稀疏分析与压缩感知。本书详细的介绍了近年受到广泛关注的一些前沿专题,例如EM算法、粒子滤波、独立分量分析、盲源分离的子空间方法、稀疏表示与压缩感知等,空间阵列信号处理的一些初步内容会穿插在有关章节,但不单独成章。本书在写作中既注重了内容的性和系统性,也注重了内容的可读性。

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP