作者简介 李杰,同济大学特聘教授,博士生导师,上海防灾救灾研究所所长。1998年获国家杰出青年科学基金,1999年入选教育部“长江学者奖励计划”首批特聘教授。现兼任国际结构安全性与可靠性协会(IASSAR)执委会执委、国际土木工程风险与可靠性协会(CERRA)主席团成员,Structural Safety、International Journal of Nonlinear Mechanics等刊编委,中国振动工程学会副理事长、随机振动专业委员会主任,中国建筑学会结构计算理论专业委员会主任等学术职务。长期从事结构工程、地震工程、随机动力学和工程可靠性理论研究工作,在随机动力学、工程结构可靠度与生命线工程研究中取得了具有国际影响力的研究成果。2015年,工程结构抗灾可靠性设计的概率密度演化理论获得国家自然科学二等奖;2014年,因在概率密度演化理论与生命线工程可靠性方面的学术成就、被美国土木工程师学会(ASCE)授予Freudenthal奖章;2013年,因在随机动力学与生命线工程可靠性方面的学术成就、被丹麦王国奥尔堡大学授予荣誉博士学位;另外,围绕研究方向曾获国家科技进步奖以及上海市科技进步一等奖等科技奖励30余项。著有5部学术专。在国内外发表学术期刊论文400余篇,其中SCI收录120余篇、EI收录260余篇,研究论著被引用7000余次。 刘威,博士、伦斯勒理工学院访问学者访问,同济大学土木工程学院副教授。专长于生命线地震工程领域,从事生命线地震工程研究。在国内外学术期刊及国际学术会议发表研究论文70余篇,其中SCI收录18篇,获上海市科学技术进步奖一等奖1项。
目录 1 Introduction 1.1 Lifeline Engineering Systems 1.2 Damages of Lifeline Systems in Past Earthquakes 1.3 Main Content of the Book References 2 Seismic Hazard Assessment 2.1 Introduction 2.2 Uncertainty and Probability Model 2.2.1 Earthquake Occurrence Probability Model 2.2.2 Potential Seismic Zone 2.2.3 Probability Distribution Function of Earthquake Magnitude 2.2.4 Ground Motion Attenuation 2.3 Seismic Hazard Analysis Method 2.3.1 Point-Source Model 2.3.2 Line-Source Model 2.3.3 Area-Source Model 2.3.4 Probability Distribution Function of Ground Motion Amplitude References 3 Seismic Ground Motion Model 3.1 Introduction 3.2 Statistically-Based Model 3.2.1 Stationary and Non-stationary Processes 3.2.2 One-Dimensional Stochastic Process Model 3.2.3 Random Field Model 3.3 Physically-Based Model 3.3.1 Fourier Spectral Form of One-Dimensional Ground Motion 3.3.2 Seismic Source Spectrum 3.3.3 Transfer Function of the Path 3.3.4 Local Site Effect 3.3.5 One-Dimensional Ground Motion Model 3.3.6 Physical Random Field Model of Ground Motions References 4 Seismic Performance Evaluation of Buried Pipelines 4.1 Seismic Damage of Buried Pipelines 4.1.1 Pipeline Damage in Past Earthquakes 4.1.2 Damage Characteristics of Buried Pipelines 4.1.3 Factors Affecting Buried Pipeline Damages 4.1.4 Empirical Statistics of Damage Ratio 4.2 Seismic Response Analysis of Buried Pipelines 4.2.1 Pseudo-static Analysis Method 4.2.2 Pipeline Stress Computation 4.3 Seismic Response Analysis of Pipeline Networks 4.4 Seismic Reliability Evaluation of Buried Pipeline 4.4.1 Uncertainty of Pipeline Resistance 4.4.2 Seismic Reliability Analysis of Buried Pipelines References 5 Seismic Response Analysis of Structures 5.1 Structural Analysis Model 5.1.1 General Finite Element Model 5.1.2 Seismic Analysis Model of Structure-Equipment Systems 5.1.3 Dynamic Analysis Model of Structure Subject to Multi-point Ground Motions 5.2 Deterministic Seismic Response Analysis of Structures 5.2.1 Linear Acceleration Algorithm 5.2.2 Generalized u-Algorithm 5.3 Stochastic Seismic Response Analysis of Structures 5.3.1 Principle of Preservation of Probability 5.3.2 The Generalized Probability Density Evolution Equation 5.3.3 Numerical Method for Solving General Probability Density Evolution Equation 5.4 Seismic Reliability Analysis of Structures References 6 Seismic Reliability Analysis of Engineering Network(I)--Connectivity Reliability 6.1 Introduction 6.2 Foundation of System Reliability Analysis 6.2.1 Basic Concepts of Graph Theory 6.2.2 Structural Function of Network Systems 6.2.3 Reliability of Simple Network System 6.3 Minimal Path Algorithm 6.3.1 Adjacent Matrix Algorithm 6.3.2 Depth First Search Algorithm 6.3.3 Breadth First Search Algorithm 6.4 Disjoint Minimal Path Algorithm 6.4.1 Reliability Evaluation of Network System and Its Complexity 6.4.2 Disjoint Minimal Path Algorithm 6.4.3 Reliability Analysis Based on DMP Algorithm 6.5 Recursive Decomposition Algorithm 6.5.1 Related Theorems 6.5.2 RDA for Edge-Weighted Network 6.5.3 RDA for Node-Weighted Network 6.6 Cut-Based Recursive Decomposition Algorithm 6.6.1 Minimal Cut Searching Algorithm 6.6.2 Cut-Based Recursive Decomposition Algorithm 6.7 Reliability Analysis of Network with Dependent Failure 6.8 Monte Carlo Simulation Method References 7 Seismic Reliability Analysis of Engineering Network (II)--The Functional Reliability 7.1 Introduction 7.2 Functional Analysis of Water Supply Network 7.3 Functional Analysis of Water Supply Network with Leakage 7.3.1 Hydraulic equation of water supply network with leakage 7.3.2 Analysis method 7.4 Seismic Functional Reliability Analysis of Water Supply Network References 8 Aseismic Optimal Design of Lifeline Networks 8.1 Introduction 8.2 Network Topology Optimization Based on Connectivity Reliability 8.2.1 Topology Optimization Model 8.2.2 Genetic Algorithm 8.2.3 Examples 8.3 Topology Optimization of Water Supply Network 8.3.1 Optimization Model 8.3.2 Algorithms for Seismic Topology Optimization 8.3.3 Examples References 9 Simulation and Control of Composite Lifeline System 9.1 Introduction 9.2 Disaster Response Simulation of Composite Lifeline System 9.2.1 Fundamentals of Discrete Event Dynamic Simulation 9.2.2 Simulation of Composite Lifeline Engineering System 9.2.3 Disaster Simulation Model of Composite Lifeline System 9.2.4 Simulation Convergence Criteria and Simulation Statistics 9.3 Petri Net Model for Disaster Simulation of Composite Lifeline System 9.3.1 Classic Petri Net 9.3.2 Non-Autonomous Colored Petri Net 9.3.3 Seismic Disaster Simulation of Composite Lifeline System 9.4 Case Study on Seismic Disaster Simulation 9.5 Urban Earthquake Disaster Field Control 9.5.1 System Control Based on Structural Behavior 9.5.2 System Control Based on Investment Behavior 9.5.3 Case Study References Appendix A: Boolean Algebra Basic Appendix B: Seismic Reliability Analysis of Transformer Substation Appendix C: Seismic Secondary Fire Analysis Bibliography
以下为对购买帮助不大的评价