目录 IntroductionChapter XXV. Lagrangian Distributions and Fourier IntegralOperatorsSummary25.1. Lagrangian Distributions25.2. The Calculus of Fourier Integral Operators25.3. Special Cases of the Calculus, and L2 Continuity25.4. Distributions Associated with Positive Lagrangian Ideals25.5. Fourier Integral Operators with Complex PhaseNotesChapter XXVI. Pseudo-Differential Operators of Principal Type .Summary26.1. Operators with Real Principal Symbols26.2. The Complex Involutive Case26.3. The Symplectic Case26.4. Solvability and Condition (ψ)26.5. Geometrical Aspects of Condition (P)26.6. The Singularities in N1126.7. Degenerate Cauchy-Riemann Operators26.8. The Nirenberg-Treves Estimate26.9. The Singularities in Ne/2 and in Ne/1226.10. The Singularities on One Dimensional Bicharacteristics26.11. A Semi-Global Existence TheoremNotesChapter XXVII. Subelliptic OperatorsSummary27.1. Definitions and Main Results27.2. The Taylor Expansion of the Symbol27.3. Subelliptic Operators Satisfying (P)27.4. Local Properties of the Symbol27.5. Local Subelliptic Estimates27.6. Global Subelliptic EstimatesNotesChapter XXVIII. Uniqueness for the Cauchy problemSummary28.1. Calderons Uniqueness Theorem28.2. General Carleman Estimates28.3. Uniqueness Under Convexity Conditions28.4. Second Order Operators of Real Principal TypeNotesChapter XXIX. Spectral AsymptoticsSummary29.1. The Spectral Measure and its Fourier Transform29.2. The Case of a Periodic Hamilton Flow29.3. The Weyl Formula for the Dirichlet ProblemNotesChapter XXX. Long Range Scattering TheorySummary30.1. Admissible Perturbations30.2. The Boundary Value of the Resovent, and the Point Spectrum30.3. The Hamilton Flow30.4. Modified Wave Operators30.5. Distorted Fourier Transforms anti Asymptotic CompletenessNotesBibliographyIndexIndex of Notation
以下为对购买帮助不大的评价