智能配电网状态估计与感知
正版保障 假一赔十 可开发票
¥
63.11
6.4折
¥
98
全新
仅1件
作者 白星振,葛磊蛟著
出版社 中国电力出版社
ISBN 9787519849177
出版时间 2020-12
装帧 精装
开本 16开
定价 98元
货号 11017035
上书时间 2024-12-14
商品详情
品相描述:全新
商品描述
作者简介 白星振,博士,山东科技大学电气与自动化工程学院副教授、硕士研究生导师。先后主持山东省自然科学基金、山东省博士基金、山东省高校科技计划及校企合作项目等10余项,作为技术骨干,参与国家自然科学基金重点项目、科技部专项、山东省自然科学基金等6项;在IEEE Transactions on Industrial Electronics、IET Generation Transmission & Distribution、《电工技术学报》等国内外期刊和会议上发表学术论文50余篇,其中被SCI/EI收录30余篇;授权发明专利6项,申请软件著作权2项;作为主要完成人,获天津市电力科技进步一等奖、山东省高校科研成果自然科学三等奖、中国节能协会节能减排科技进步三等奖等6项。主要从事电力系统状态估计、能源互联网分布式协同控制与优化、物联网及分布式状态检测等研究工作。 葛磊蛟,博士,天津大学电气自动化与信息工程学院硕士研究生导师,主要从事配电网态势感知、优化控制和综合评估等研究。作为核心骨干参与国家重点研发计划“基于电力电子变压器的交直流混合可再生能源技术研究”和“分布式光伏智慧运维关键技术研究”;作为项目负责人主持国家自然科学基金“智能配电网态势感知时滞不确定性的区间仿射方法研究”、国家电网有限公司总部科技项目及省公司科技项目等20多项;先后荣获天津市科技进步奖一等奖、二等奖等省部级科技进步奖12项,其中以第一完成人获得中国能源研究会能源创新奖(一等奖1项,三等奖1项)、中国电力建设科技进步二等奖1项、天津市科技进步二等奖1项,发表SCI/EI论文60余篇,编制国际国内多项行业标准规范,申请发明专利50多项,授权发明专利9项,编写中英文专著(章节)4部。《电力电容器与无功补偿》编委,IEEE Member,中国电机工程学会、中国能源学会、中国电工技术学会会员,先后多次担任AEIC、中国电力系统及其自动化年会等国际国内会议的分会场主席,长期作为IEEE Transaction on Smart Grid、IEEE Transactions on Power Systems、 International Journal of Electrical Power and Energy Systems、《中国电机工程学报》《电力系统自动化》《电工技术学报》《电网技术》等评审专家,多次被《中国电机工程学报》《电网技术》《广东电力》《电力建设》等评为年度优秀审稿专家。 目录 目录 前言 第1 章 概述 ···················································································1 1.1 配电网状态估计 ···································································1 1.2 配电网状态估计研究现状 ·······················································3 1.3 不确定性量测下配电网状态估计 ··············································9 第2 章 配电网可观测性分析和关键数据辨识 ······································· 11 2.1 基于支路电流的配电系统状态估计模型 ··································· 11 2.2 有功/无功解耦可观测性分析 ················································· 16 2.3 有功/无功解耦关键数据辨识 ················································· 21 2.4 算例分析 ·········································································· 23 第3 章 基于AMI 量测近邻回归的三相配电网拓扑辨识 ························· 32 3.1 概率图模型估计 ································································· 32 3.2 基于近邻回归的三相配电网拓扑辨识 ······································ 34 3.3 算例分析 ·········································································· 36 第4 章 基于鲁棒EKF 的配电网状态估计 ··········································· 40 4.1 主要引理 ·········································································· 40 4.2 系统动态模型 ···································································· 43 4.3 鲁棒扩展卡尔曼滤波器设计 ·················································· 44 4.4 仿真分析 ·········································································· 47 第5 章 基于自适应扩展集员滤波的配电网状态估计 ······························ 54 5.1 系统模型 ··········································································· 54 5.2 主要定理 ··········································································· 55 5.3 自适应扩展集员滤波器设计 ··················································· 57 5.4 仿真分析 ··········································································· 63 第6 章 三相不平衡配电系统两阶段可靠状态估计 ································· 67 6.1 三相可靠状态估计基本模型 ··················································· 67 6.2 第一阶段——配电系统三相仿射潮流计算 ································· 68 6.3 第二阶段——线性松弛优化 ··················································· 73 6.4 算例分析 ··········································································· 77 第7 章 量测丢失情形下的配电网状态估计 ·········································· 86 7.1 系统模型 ··········································································· 86 7.2 量测丢失及滤波器结构设计与优化 ·········································· 88 7.3 带有随机量测丢失的估计器设计 ············································· 92 7.4 仿真分析 ··········································································· 98 第8 章 基于事件触发机制的配电网状态估计 ····································· 102 8.1 系统模型 ········································································· 102 8.2 事件触发机制下量测模型 ···················································· 105 8.3 基于事件触发的估计器设计 ················································· 106 8.4 仿真分析 ········································································· 108 附录A 黎卡提型差分方程一证明 ····················································· 114 附录B 黎卡提型差分方程二证明 ····················································· 116 附录C 黎卡提型差分方程三证明 ····················································· 118 附录D 黎卡提型差分方程四证明 ····················································· 120 参考文献 ······················································································ 122 索引 ···························································································· 137 内容摘要目前,随着供配电技术的发展,配电网中大量可再生能源及多种类型负荷接入,使配电网的拓扑结构变得越来越复杂,这给网络状态的监测与控制带来了严峻挑战。在智能配电网条件下,受用户随机需求响应、客户多样化需求、应急减灾等因素影响,配电网运行趋于复杂多样,对配电管理的要求日趋提高。针对目前配电网状态估计中存在的问题,本书从配电网状态可观测性、数据及网络拓扑辨识、不接近量测下可靠状态估计等方面进行研究阐述。本书适合从事配电网状态监测、估计和态势分析感知的科学研究人员以及高等院校电气工程等相关专业的研究生阅读和参考。 精彩内容目前,随着供配电技术的发展,配电网中大量可再生能源及多种类型负荷接入,使配电网的拓扑结构变得越来越复杂,这给网络状态的监测与控制带来了严峻挑战。在智能配电网条件下,受用户随机需求响应、客户多样化需求、应急减灾等因素影响,配电网运行趋于复杂多样,对配电管理的要求日趋提高。针对目前配电网状态估计中存在的问题,本书从配电网状态可观测性、数据及网络拓扑辨识、不接近量测下可靠状态估计等方面进行研究阐述。本书适合从事配电网状态监测、估计和态势分析感知的科学研究人员以及高等院校电气工程等相关专业的研究生阅读和参考。 媒体评论 针对目前配电网状态估计中存在的问题,本书从配电网状态可观测性、数据及网络拓扑辨识、不完全量测下可靠状态估计等方面进行研究阐述。 本专著针对目前智能电网背景下智能配电网状态估计及态势感知的研究,内容新颖且市面相关著作较少 。
— 没有更多了 —
本店暂时无法向该地区发货
以下为对购买帮助不大的评价