正版保障 假一赔十 可开发票
¥ 111.54 6.6折 ¥ 169 全新
仅1件
作者王耀革,郭从洲,崔国忠主编
出版社科学出版社
ISBN9787030733238
出版时间2022-10
装帧其他
开本其他
定价169元
货号11839675
上书时间2024-11-10
目录
前言
第1章 高等数学基础知识 1
1.1 实数系 1
1.1.1 映射 1
1.1.2 函数的概念 1
1.1.3 实数系 2
习题1-1 11
1.2 函数的运算与初等性质 11
1.2.1 函数的运算 11
1.2.2 函数的初等性质 12
1.2.3 基本初等函数与初等函数 15
习题1-2 19
1.3 极限 19
1.3.1 数列的极限 21
1.3.2 函数的极限 31
1.3.3 无穷小与无穷大 37
1.3.4 极限的性质 41
1.3.5 极限的运算法则 47
1.3.6 极限存在准则与两个重要极限 54
1.3.7 无穷小的比较 67
习题1-3 74
1.4 连续函数 77
1.4.1 连续函数的概念 77
1.4.2 连续函数的运算性质 79
1.4.3 间断点及其类型 80
1.4.4 闭区间上连续函数的性质 82
习题1-4 85
第2章 一元函数微分学及其应用 88
2.1 导数的概念 88
2.1.1 导数概念的背景 88
2.1.2 导数的定义 90
2.1.3 导数存在的条件 91
2.1.4 导函数 92
2.1.5 导数概念的基本应用 92
2.1.6 可导与连续的关系 96
习题2-1 98
2.2 导数的计算 99
2.2.1 导数的四则运算法则 100
2.2.2 反函数求导法则 101
2.2.3 复合函数的求导法则 104
2.2.4 高阶导数 106
2.2.5 一些特殊函数的求导方法 110
习题2-2 116
2.3 函数的微分 118
2.3.1 微分产生的背景 118
2.3.2 微分的定义 119
2.3.3 微分运算法则与形式不变性 121
2.3.4 微分的应用 122
习题2-3 125
2.4 微分中值定理 126
2.4.1 费马引理 126
2.4.2 罗尔定理 129
2.4.3 拉格朗日中值定理 130
2.4.4 柯西中值定理 132
2.4.5 中值定理的应用举例 135
习题2-4 137
2.5 洛必达法则 138
2.5.1 待定型极限 138
2.5.2 洛必达法则 139
习题2-5 146
2.6 微分中值定理的应用 146
2.6.1 函数的单调性 146
2.6.2 函数的极值 151
2.6.3 函数的凹凸性 156
2.6.4 函数的渐近线 160
2.6.5 函数的图形 161
习题2-6 162
2.7 泰勒公式 163
2.7.1 背景 163
2.7.2 泰勒公式 165
2.7.3 常用函数的麦克劳林公式 168
2.7.4 函数的泰勒展开 170
2.7.5 泰勒公式的应用 172
习题2-7 177
2.8 平面曲线的曲率 178
2.8.1 曲率的定义 178
2.8.2 曲率公式 179
2.8.3 曲率圆 181
2.8.4 渐屈线和渐伸线 183
习题2-8 184
2.9 方程的近似解 184
2.9.1 二分法 184
2.9.2 切线法(牛顿法)185
习题2-9 188
第3章 一元函数积分学及其应用 189
3.1 定积分的概念和性质 189
3.1.1 定积分问题引例 189
3.1.2 定积分的概念 193
3.1.3 定义的简单应用 194
3.1.4 可积的条件 196
3.1.5 定积分的性质 198
习题3-1 202
3.2 微积分基本定理 203
3.2.1 变上限积分函数 203
3.2.2 微积分基本定理 207
习题3-2 209
3.3 不定积分 210
3.3.1 不定积分的概念 210
3.3.2 不定积分的性质与运算法则 213
3.3.3 不定积分的几种计算方法 217
3.3.4 某些特殊类型函数的不定积分 238
习题3-3 248
3.4 定积分的计算 250
3.4.1 定积分的换元法 251
3.4.2 定积分的分部积分法 253
3.4.3 基于特殊结构的定积分的计算 256
习题3-4 260
3.5 定积分的应用 261
3.5.1 平面图形的面积 261
3.5.2 已知截面积的立体和旋转体的体积 269
3.5.3 平面曲线的弧长 274
.3.5.4 旋转体的侧面积 277
3.5.5 定积分的物理应用 278
习题3-5 282
3.6 反常积分 283
3.6.1 无穷限反常积分 286
3.6.2 无界函数的反常积分 290
3.6.3 反常积分收敛性的判别法 292
习题3-6 300
第4章 微分方程 301
4.1 微分方程的基本概念 301
4.1.1 微分方程的基本概念 301
4.1.2 微分方程建模简介 305
习题4-1 308
4.2 一阶微分方程的初等解法 309
4.2.1 可分离变量微分方程 309
4.2.2 一阶线性微分方程 312
4.2.3 利用变量代换求解一阶微分方程 316
习题4-2 323
4.3 可降阶的高阶微分方程 324
4.3.1y′′=f(x)型微分方程 324
4.3.2y′′=f(x,y′)型微分方程 325
4.3.3y′′=f(y,y′)型微分方程 328
习题4-3 329
4.4 二阶线性微分方程 330
4.4.1 二阶线性微分方程解的结构 330
4.4.2 二阶常系数线性齐次微分方程及其解法 333
4.4.3 二阶常系数线性非齐次微分方程及其解法 338
4.4.4 某些变系数线性微分方程的解法 348
习题4-4 352
.4.5 微分方程的数值解 353
— 没有更多了 —
以下为对购买帮助不大的评价