• 基于Java的深度学习
21年品牌 40万+商家 超1.5亿件商品

基于Java的深度学习

正版保障 假一赔十 可开发票

36.34 6.2折 59 全新

库存7件

广东广州
认证卖家担保交易快速发货售后保障

作者[印]拉胡尔·拉吉

出版社中国电力出版社有限责任公司

ISBN9787519854294

出版时间2020-06

装帧平装

开本16开

定价59元

货号11083798

上书时间2024-09-25

灵感书店

三年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
作者简介
[印]拉胡尔·拉吉(Rahul Raj)在软件开发,业务分析,客户沟通以及在多个领域的中/大型项目咨询中拥有超过7年的IT行业经验。目前,他在顶级软件开发公司担任首席软件工程师。在开发活动方面拥有丰富的经验,包括需求分析,设计,编码,实现,代码审查,测试,用户培训和增强。他撰写了许多有关Java中神经网络的文章,并且在DL4J / Java官方频道中也有介绍。他还是由印度最大的政府认证机构Vskills认证的认证机器学习专家。

目录
目录
前言
第1章 Java深度学习简介  1
1.1 技术要求 1
1.2 初识深度学习 2
1.2.1 反向传播  2
1.2.2 多层感知器  3
1.2.3 卷积神经网络  3
1.2.4 递归神经网络  3
1.2.5 为什么DL4J对深度学习很重要?  4
1.3 确定正确的网络类型来解决深度学习问题 4
1.3.1 实现过程  4
1.3.2 工作原理  4
1.3.3 相关内容  7
1.4 确定正确的激活函数 9
1.4.1 实现过程  9
1.4.2 工作原理  9
1.4.3 相关内容  10
1.5 解决过度拟合问题  10
1.5.1 实现过程  11
1.5.2 工作原理  11
1.5.3 相关内容  11
1.6 确定正确的批次大小和学习速率  12
1.6.1 实现过程  12
1.6.2 工作原理  12
1.6.3 相关内容  13
1.7 为DL4J配置 Maven  14
1.7.1 准备工作  14
1.7.2 实现过程  14
1.7.3 工作原理  15
1.8 为DL4J配置GPU加速环境 16
1.8.1 准备工作  16
1.8.2 实现过程  16
1.8.3 工作原理  17
1.8.4 相关内容  18
1.9 安装问题疑难解答  18
1.9.1 准备工作  19
1.9.2 实现过程  19
1.9.3 工作原理  19
1.9.4 相关内容  20
第2章 数据提取、转换和加载 23
2.1 技术要求  23
2.2 读取并迭代数据  24
2.2.1 准备工作  24
2.2.2 实现过程  24
2.2.3 工作原理  28
2.2.4 相关内容  32
2.3 执行模式转换  33
2.3.1 实现过程  33
2.3.2 工作原理  34
2.3.3 相关内容  34
2.4 构建转换过程  35
2.4.1 实现过程  35
2.4.2 工作原理  36
2.4.3 相关内容  36
2.5 序列化转换  37
2.5.1 实现过程  38
2.5.2 工作原理  38
2.6 执行转换过程  39
2.6.1 实现过程  39
2.6.2 工作原理  39
2.6.3 相关内容  40
2.7 规范化数据以提高网络效率  40
2.7.1 实现过程  40
2.7.2 工作原理  41
2.7.3 相关内容  42
第3章 二元分类的深层神经网络构建 43
3.1 技术要求  43
3.2 从CSV输入中提取数据 44
3.2.1 实现过程  44
3.2.2 工作原理  44
3.3 从数据中删除异常  45
3.3.1 实现过程  45
3.3.2 工作原理  46
3.3.3 相关内容  48
3.4 将转换应用于数据  49
3.4.1 实现过程  49
3.4.2 工作原理  50
3.5 为神经网络模型设计输入层  52
3.5.1 准备工作  52
3.5.2 实现过程            53
3.5.3 工作原理  53
3.6 为神经网络模型设计隐藏层  54
3.6.1 实现过程  54
3.6.2 工作原理  54
3.7 为神经网络模型设计输出层  54
3.7.1 实现过程  54
3.7.2 工作原理  55
3.8 训练和评估CSV数据的神经网络模型 55
3.8.1 实现过程  55
3.8.2 工作原理  57
3.8.3 相关内容  62
3.9 部署神经网络模型并将其用作API  63
3.9.1 准备工作  63
3.9.2 实现过程  64
3.9.3 工作原理  68
第4章 建立卷积神经网络 70
4.1 技术要求  70
4.2 从磁盘提取图像  71
4.2.1 实现过程  71
4.2.2 工作原理  72
4.3 为训练数据创建图像变体  73
4.3.1 实现过程  73
4.3.2 工作原理  73
4.3.3 相关内容  75
4.4 图像预处理和输入层设计  75
4.4.1 实现过程            75
4.4.2 工作原理  76
4.5 为CNN构造隐藏层  77
4.5.1 实现过程  77
4.5.2 工作原理  78
4.6 构建输出层以进行输出分类  78
4.6.1 实现过程  78
4.6.2 工作原理  78
4.7 训练图像并评估CNN输出  79
4.7.1 实现过程  79
4.7.2 工作原理  81
4.7.3 相关内容  81
4.8 为图像分类器创建API端点  82
4.8.1 实现过程  82
4.8.2 工作原理  87
第5章 实现自然语言处理 88
5.1 技术要求  89
5.2 数据要求  89
5.3 读取和加载文本数据  90
5.3.1 准备工作  90
5.3.2 实现过程  90
5.3.3 工作原理  92
5.3.4 相关内容  92
5.3.5 参考资料  92
5.4 分析词数据并训练模型  93
5.4.1 实现过程  93
5.4.2 工作原理  93
5.4.3 相关内容  94
5.5 评估模型  95
5.5.1 实现过程  95
5.5.2 工作原理  95
5.5.3 相关内容  96
5.6 从模型中生成图谱  96
5.6.1 准备工作  96
5.6.2 实现过程  96
5.6.3 工作原理  97
5.7 保存和重新加载模型  98
5.7.1 实现过程  99
5.7.2 工作原理  99
5.8 导入GoogleNews向量  99
5.8.1 实现过程  99
5.8.2 工作原理  100
5.8.3 相关内容  100
5.9 Word2Vec模型的故障诊断和调整  101
5.9.1 实现过程  101
5.9.2 工作原理  102
5.9.3 参考资料  103
5.10 使用CNNs使用 Word2Vec进行句子分类  103
5.10.1 准备工作  104
5.10.2 实现过程  105
5.10.3 工作原理  107
5.10.4 相关内容  107
5.11 使用Doc2Vec进行文档分类  109
5.11.1 实现过程  109
5.11.2 工作原理  111
第6章 构建时间序列的LSTM神经网络  114
6.1 技术要求 114
6.2 提取和读取临床数据 115
6.2.1 实现过程  115
6.2.2 工作原理  116
6.3 加载和转换数据 117
6.3.1 准备工作  117
6.3.2 实现过程  118
6.3.3 工作原理  118
6.4 构建网络输入层 119
6.4.1 实现过程  119
6.4.2 工作原理  120
6.5 构建网络输出层 121
6.5.1 实现过程  121
6.5.2 工作原理  121
6.6 训练时间序列数据 122
6.6.1 实现过程  122
6.6.2 工作原理  123
6.7 评估LSTM网络的效率  123
6.7.1 实现过程  123
6.7.2 工作原理  124
第7章 构建LSTM神经网络序列分类  125
7.1 技术要求 125
7.2 提取时间序列数据 127
7.2.1 实现过程  127
7.2.2 工作原理  128
7.3 加载训练数据 129
7.3.1 实现过程  130
7.3.2 工作原理  131
7.4 规范化训练数据 132
7.4.1 实现过程  132
7.4.2 工作原理  132
7.5 为网络构建输入层 133
7.5.1 实现过程  133
7.5.2 工作原理  134
7.6 为网络构建输出层 134
7.6.1 实现过程  134
7.6.2 工作原理  135
7.7 LSTM网络分类输出的评估  135
7.7.1 实现过程  135
7.7.2 工作原理  136
第8章 对非监督数据执行异常检测  139
8.1 技术要求 139
8.2 提取和准备 MNIST数据  140
8.2.1 实现过程  140
8.2.2 工作原理  141
8.3 为输入构造密集层 142
8.3.1 实现过程  142
8.3.2 工作原理  142
8.4 构造输出层 143
8.4.1 实现过程  143
8.4.2 工作原理    143
8.5 MNIST图像训练  144
8.5.1 实现过程  144
8.5.2 工作原理  144
8.6 根据异常得分评估和排序结果 145
8.6.1 实现过程  145
8.6.2 工作原理  146
8.7 保存结果模型 148
8.7.1 实现过程  148
8.7.2 工作原理  148
8.7.3 相关内容  148
第9章 使用RL4J进行强化学习  149
9.1 技术要求 149
9.2 设置 Malmo环境和各自的依赖项  152
9.2.1 准备工作  152
9.2.2 实现过程  152
9.2.3 工作原理  153
9.3 设置数据要求 153
9.3.1 实现过程  153
9.3.2 工作原理  157
9.3.3 参考资料  158
9.4 配置和训练DQN智能体  158
9.4.1 准备工作  158
9.4.2 实现过程  158
9.4.3 工作原理  160
9.4.4 相关内容  162
9.5 评估 Malmo智能体  162
9.5.1 准备工作  162
9.5.2 实现过程  163
9.5.3 工作原理  163
第10章 在分布式环境中开发应用程序 165
10.1 技术要求  165
10.2 设置DL4J和所需的依赖项  166
10.2.1 准备工作  166
10.2.2 实现过程  167
10.2.3 工作原理  173
10.3 创建用于训练的uber-JAR  174
10.3.1 实现过程  174
10.3.2 工作原理  175
10.4 训练用的CPU/GPU特定配置  176
10.4.1 实现过程  176
10.4.2 工作原理  176
10.4.3 更多内容  177
10.5 Spark的内存设置和垃圾回收  177
10.5.1 实现过程  177
10.5.2 工作原理  178
10.5.3 更多内容  179
10.6 配置编码阈值  181
10.6.1 实现过程  181
10.6.2 工作原理  181
10.6.3 更多内容  182
10.7 执行分布式测试集评估  182
10.7.1 实现过程  182
10.7.2 工作原理  186
10.8 保存和加载训练过的神经网络模型  187
10.8.1 实现过程  187
10.8.2 工作原理  188
10.8.3 更多内容  188
10.9 执行分布式推理  188
10.9.1 实现过程  188
10.9.2 工作原理  189
第11章 迁移学习在网络模型中的应用 190
11.1 技术要求  190
11.2 修改当前的客户保留模型  190
11.2.1 实现过程  191
11.2.2 工作原理  192
11.2.3 更多内容  195
11.3 微调学习配置  196
11.3.1 实现过程  196
11.3.2 工作原理  197
11.4 冻结层的实现  197
11.4.1 实现过程  198
11.4.2 工作原理  198
11.5 导入和加载Keras模型和层  198
11.5.1 准备工作  198
11.5.2 实现过程  199
11.5.3 工作原理  199
第12章 基准测试和神经网络优化 201
12.1 技术要求  201
12.2 DL4J/ND4J特定的配置 203
12.2.1 准备工作  230 203
12.2.2 实现过程  203
12.2.3 工作原理  204
12.2.4 更多内容  206
12.3 设置堆空间和垃圾回收  207
12.3.1 实现过程  207
12.3.2 工作原理  209
12.3.3 更多内容  210
12.3.4 其他参阅  210
12.4 使用异步ETL 210
12.4.1 实现过程  210
12.4.2 工作原理  211
12.4.3 更多内容  211
12.5 利用仲裁器监测神经网络行为  212
12.5.1 实现过程  212
12.5.2 工作原理  213
12.6 执行超参数调整  213
12.6.1 实现过程  214
12.6.2 工作原理  217

内容摘要
第1章Java深度学习简介

让我们来讨论一下各种各样的深度学习库,以便根据当前的目标挑选最好的库。这是一个视情况而定的决策,并且会根据情况而变化。在本章中,我们将首先简要介绍深度学习,并探讨DL4J如何成为解决深度学习难题的最佳选择。我们还将讨论如何在你的工作区中设

置DL4J

在本章中,我们将介绍以下方法:

·初步了解深度学习。

·确定正确的网络类型来解决深度学习问题。确定正确的激活函数

·应对过度拟合问题。

·确定正确的批次大小和学习建率

·为DLAIJ配置GPU加速环境。解决安装疑难问题。

1.1技术要求

你需要完成以下内容才能充分利用本书

·已安装JavaSE7或更高版本。

·了解Java基本核心知识。

.了解DLJ基础知识。

·了解Maven基础知识

·具备基本数据分析技能

·具备深度学习/机器学习基础。

·了解操作系统命令基础知识(Linux.Windows).

·了解IntellJIDEAIDE(这是一种非常简单且轻松的代码管理方式,但你可以尝试使

用其他IDE,例如 Eclipse)

·了解Spring Boot基础知识(将DLAJ与Spring Boot集成以用于Web应用程序)

1.2.2多层感知器

多层感知器(multilayer perceptron,MLP)是一个标准的前馈神经网络,至少有三层:输入层、隐藏层和输出层。隐藏层位于结构中的输入层之后。深层神经网络在结构中有两个或多个隐藏层,而MLP只有一个。

1.2.3

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP