R语言数据高效处理指南
¥
22
3.7折
¥
59
全新
仅1件
作者 黄天元 著
出版社 北京大学出版社
出版时间 2019-09
版次 1
装帧 平装
货号 24-4
上书时间 2024-12-31
商品详情
品相描述:全新
图书标准信息
作者
黄天元 著
出版社
北京大学出版社
出版时间
2019-09
版次
1
ISBN
9787301306086
定价
59.00元
装帧
平装
开本
16开
纸张
轻型纸
页数
212页
字数
309千字
【内容简介】
R 语言在近10 年来已经发生了日新月异的变化,不仅在内容上更加丰富多彩,而且在计算效率上也有了大幅的提升。它被更加广泛地用于数据可视化、统计建模、机器学习等领域,而且还能实现网络爬虫、网络应用开发等功能,成为数据科学领域的全能型工具。R 语言在学术界的地位已经不容置疑,在大数据时代中它是保证研究可重复性的重要工具。随着功能的日益完善,R 语言已经进军工业界,并在金融、保险、医疗、生物和信息计量等不同的应用场景中大放异彩,潜力不可估量。 尽管R 语言能够实现丰富多样的实际功能和框架,但是其本质是面向数据的,因此数据处理是R 语言核心中的核心。如果能够掌握高效的数据操作技术,就能够在各类数据分析任务中如鱼得水。本书定位即为“R 语言数据处理101”,希望R 语言的使用者能够在较早的阶段就习得基本而有效的数据处理基本技术。 《R语言数据高效处理指南》读者群体包括在校的大学生、数据分析从业人员和致力于更加高效地处理数据的所有的R语言使用者。尽管对数据科学、计算机编程、统计学有一定基础会帮助理解本书的内容,但这不是必需的,来自包括初学者在内的各个层次的读者群体都能从本书中有所收获。读者在本书中不仅能够学到数据处理中的实用技术,还能培养在数据分析中的探索性思维。可以作为零基础学习数据分析的教程、进阶数据分析实用技巧的参考书、常备查询的案头工具书,以及具有一定趣味性的数据分析入门启蒙书。
【作者简介】
黄天元,复旦大学生态学博士在读,R语言忠实爱好者。热爱数据科学与开源工具,致力于利用数据科学迅速积累行业经验优势和科学知识发现,涉猎内容包括但不限于信息计量、机器学习、数据可视化、统计建模、知识图谱等。已发表SCI论文两篇,开设有知乎专栏“R语言数据挖掘”。
【目录】
第1 部分 基础知识...................1 第1 章 数据处理总论.......................... 2 1.1 数据处理的定义 ....................2 1.2 数据处理的意义 ...................3 1.3 数据处理基本工具 ..................3 第2 章 R 语言编程基础.................. 6 2.1 下载安装 ...................6 2.2 包的使用 ..................7 2.3 数据类型 .........................8 2.4 数据结构 ........................10 2.5 程序控制 ........................15 2.6 函数式编程 ....................17 第3 章 数据处理基本范式....................... 19 第2 部分 快速入门...................24 第4 章 base-r:基本数据处理................. 25 4.1 数据集及其基本探索 .....................25 4.2 基本范式实现 ................27 4.2.1 创建(read.csv/data.frame) ................................27 4.2.2 删除(rm) .........................28 4.2.3 检索(DF[i,j]) ...................28 4.2.4 插入(rbind/cbind) ........................31 4.2.5 排序(order) .....................33 4.2.6 过滤(DF[condition,]) ...................35 4.2.7 汇总(apply) .....................36 4.2.8 分组(aggregate) ...........................36 4.2.9 连接(merge) ....................37 第5 章 tidyverse 生态系统:简洁高效数据处理.................... 40 5.1 tidyverse 生态系统简介 ........................40 5.2 基本范式实现 ............................41 5.2.1 包的加载(p_load) ........................41 5.2.2 创建(read_csv/tibble) ..................42 5.2.3 删除(rm) .........................45 5.2.4 检索(select/slice) .........................46 5.2.5 插入(add/bind) ................50 5.2.6 排序(arrange) ..................54 5.2.7 过滤(filter) ......................56 5.2.8 汇总(summarise) .........................59 5.2.9 分组(group_by) ...........................61 5.2.10 连接(join) .....................63 5.3 高级处理工具 ................67 5.3.1 长宽数据变换(gather/spread) ..........................68 5.3.2 集合运算(intersect/union/setdiff) .....................70 5.3.3 窗口函数(rank/lead/lag/cum) ...........................74 5.3.4 连接数据库:对SQL 的支持(dbplyr) .........................81 5.3.5 巧妙写函数:变量的引用 ...............85 第3 部分 高级进阶...................93 第6 章 data.table:高速数据处理............... 94 6.1 data.table 简介 ...............94 6.2 基本范式实现 ................96 6.3 高级特性探索 ............................... 116 第7 章 sparklyr: 分布式数据处理.................................. 128 7.1 连接R 与Spark:sparklyr 包简介 ...............................128 7.2 基本操作指南 ...............................130 7.3 存储机制简介 ...............................135 7.4 分布式计算 ..................136 第4 部分 实战应用................. 139 第8 章 航班飞行数据演练..................... 140 8.1 nycflights13 数据集探索 ...........................140 8.2 flights14 数据集探索 ....................148 第9 章 测试..................... 155 第10 章 实用数据处理技巧..................... 157 10.1 数据存取 ....................157 10.1.1 令人头疼的编码格式(encoding) ..............................157 10.1.2 读写性能竞速赛(fst/feather & data.table/readr) ....................158 10.1.3 数据存取转换的瑞士军刀(rio) ...................162 10.2 并行计算(doParallel) .........................164 10.3 混合编程 ....................168 第11 章 实战案例:网络爬虫与文本挖掘............................. 173 11.1 网络爬取(rvest) .....................174 11.2 文本挖掘(tidytext).................177 第12 章 实战案例:数据塑型与可视化(ggplot2).....................180 12.1 数据准备 ....................181 12.2 柱状图(geom_bar) .................182 12.3 折线图(geom_line) ................183 12.4 饼图(ggpie) ............................184 12.5 一行代码实现一页多图(gridExtra) .......................186 第13 章 实战案例:机器学习.................. 193 13.1 机器学习概述 .............................193 13.2 为什么要做机器学习 .................193 13.3 如何入门机器学习 .....................194 13.4 数据处理与机器学习 .................195 13.5 案例分析:信贷风险预测模型构建 ...........................195 致谢..............................204
点击展开
点击收起
— 没有更多了 —
本店暂时无法向该地区发货
以下为对购买帮助不大的评价