• 非数值并行算法(第2册) 遗传算法
  • 非数值并行算法(第2册) 遗传算法
21年品牌 40万+商家 超1.5亿件商品

非数值并行算法(第2册) 遗传算法

全新正版 极速发货

36.75 7.5折 49 全新

库存2件

广东东莞
认证卖家担保交易快速发货售后保障

作者刘勇,康立山,陈毓屏

出版社科学出版社

ISBN9787030043450

出版时间1995-01

装帧平装

开本32开

定价49元

货号1202281902

上书时间2024-12-01

休闲图书吧

三年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
目录
序言

第一章绪论

§1.1自然进化与遗传算法

§1.2遗传算法的描述

§1.3表示方案的实例

1.3.1工程设计的化

1.3.2人工蚁问题

§1.4遗传算法的特点

§1.5遗传算法的发展简史

§1.6遗传算法的研究内容及其前景

第二章遗传算法的数学理论

§2.1遗传算法的基本定理

§2.2隐含并行性

§2.3基因块假设

§2.4小欺骗问题

§2.5遗传算法欺骗问题的分析与设计

§2.6模式的几何表示

§2.7遗传算法收敛性分析

2.7.1基本定义

2.7.2守恒杂交算子

2.7.3变异算子

2.7.4遗传算法的马尔柯夫链分析

第三章解连续优化问题的遗传算法

§3.1基本的遗传算法

3.1.1引言

3.1.2算法描述

3.1.3算法性能分析

3.1.4从目标函数到适应函数

3.1.5基本的选择方法

§3.2遗传算法中控制参数的化

3.2.1自适应系统模型

3.2.2试验设计

3.2.3试验结果

§3.3适应值的比例变换

3.3.1基本的比例方法

3.3.2用于选择比例函数的准则的性质

3.3.3比例函数的一

3.3.4比例函数的m

§3.4解函数优化的并行遗传算法

3.4.1遗传算法与并行计算机

3.4.2并行搜索和化

3.4.3并行遗传算法的形式描述

3.4.4性能评估

3.4.5数值结果

3.4.6超线性加速比

3.4.7PGA与一般化方法

§3.5混合遗传算法

3.5.1混合的原则

3.5.2修改的遗传算子

§3.6退火演化算法

3.6.1模拟退火算法概述

3.6.2退火演化算法用于求解连续优化问题

3.6.3比较结果及退火演化算法的并行策略

§3.7约束化问题

第四章用遗传算法设计神经网络

§4.1神经网络概述

§4.2感知机结构的设计

4.2.1感知机模型及其学习算法

4.2.2神经网络设计与遗传算法

4.2.3感知机的遗传表示

4.2.4演化过程

4.2.5试验设计

§4.3前馈神经网络的设计

4.3.1反向传播法

4.3.2混合学统

4.3.3试验结果和结论

第五章遗传算法在组合优化中的应用

§5.1基于有序的遗传算法和图着色问题

5.1.1图着色问题

5.1.2基于有序的表示和遗传算子

5.1.3图着色问题的实例

§5.2解贷郎担问题的遗传算法

5.2.1货郎担问题与几个常用的遗传算子

5.2.2算法描述

5.2.3货郎担问题的计算结果

§5.3解映射问题的并行遗传算法

5.3.1引言

5.3.2遗传表示和并行策略

5.3.3并行遗传算法的执行分析

第六章遗传程序设计与程序设计自动化

§6.1引言

§6.2遗传程序设计的主要步骤

§6.3遗传程序设计的具体描述

6.3.1函数集和端点集

6.3.2初始结构

6.3.3适应值度量

6.3.4主要操作

6.3.5控制参数

§6.4解人工蚁问题的遗传程序设计

第七章遗传算法与其它自适应搜索方法的比较

§7.1引言

§7.2四种自适应搜索方法的比较

§7.3结束语

附录Groschel货郎担问题的顶点坐标

参考文献

内容摘要
本书系统地叙述了非数值并行算法之一的遗传算法的基本原理以及近期新进展,同时为了便于读者解决实际问题,书中对具体算法的步骤作了详细介绍。本书共分七章,第一章介绍算法的思想、特点、发展过程和前景。第二章介绍算法的基本理论。第三章讨论算法鳃连续优化问题,第四章利用算法设计和优化神经网络,第五章介绍在组合优化中的应用。第六章介绍应用遗传程序设计解决程序设计自动化问题,第七章对遗传算法和其它适应性算法进行比较。

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP