¥ 17.13 1.9折 ¥ 89.8 九五品
仅1件
作者李永乐、王式安、武忠祥、季文铎 著
出版社国家行政学院出版社
出版时间2017-12
版次1
装帧平装
货号A1
上书时间2024-12-23
全书分三篇,分别是高等数学、线性代数、概率论与数理统计,各篇按大纲设置章节,每章的编排如下:
1.考点与要求设置本部分的目的是使考生明白考试内容和考试要求,从而在复习时有明确的目标和重点。
2.内容精讲本部分对考试大纲所要求的知识点进行全面阐述,并对考试重点、难点以及常考知识点进行深度剖析。
3.例题分析本部分对历年考题所涉及的题型进行归纳分类,总结各种题型的解题方法,注重对所学知识的应用,以便能够开阔考生的解题思路,使所学知识融会贯通,并能建议考生在使用本书时不要就题论题,而是要多动脑,通过对题目的练习、比较、思考,总结并发现题目设置和解答的规律性,真正掌握应试解题的金钥匙,从而迅速提高知识水平和应试能力,取得理想分数。
4.习题分阶只有适量的练习才能巩固所学的知识,数学复习离不开做题。为了使考生更好地巩固所学知识,提高实际解题能力,本书作者精心优化设计了一定数量的练习题,供考生练习,以便使考生在熟练掌握基本知识的基础上,达到轻松解答真题的水平。同时,本书对精选的练习题,进行了难度分阶,从基础概念,到综合应用,层层递进,实现练习、巩固、提高三维一体。
李永乐,
清华大学应用数学系教授,北京高教学会数学研究会副理事长。全国著名的考研数学线性代数辅导专家,多次参加考研数学大纲修订和全国性数学考试命题工作。
王式安,
1987-2001年间担任全国研究生入学考试数学命题组组长,教育部考研数学命题组资深专家。原北京理工大学研究生院院长、应用数学系系主任、教授,享受国务院特殊津贴。王老师是2004年中央电视台采访的考研辅导名师!凭着王老师多年参加考研数学命题工作的经验,使他对考研数学的命题思路和命题方向了如指掌。
武忠祥,
西安交通大学数学系教授,国家教学成果二等奖和陕西省及西安交大教学成果特等奖获得者,具有丰富的教学、命题及辅导经验。从事高等数学教学和考研辅导二十多年,国家高等数学试题库骨干专家,多次参加考研数学大纲修订及全国性数学考试命题工作。高教版工科教材编写者。考研数学历年真题研究骨干专家。长期的考研辅导和对考研试题深入细致的研究与分析,以及书写工整,字迹流畅,儒家风范,透析经典错误一针见血,对学生在高数上存在的弱点了如指掌,使得他的考研辅导针对性强,切题率高,效果显着。
季文铎,
全国研究生入学考试数学试卷命题组组长,北京交通大学教授(享受国家津贴),教学成果奖获得者。季文铎教授自1989年以来至今一直致力研究生入学考试数学科目的命题工作,常年担任该命题组组长、阅卷组组长,对硕士研究生入学考试命题有着精准的把握及深刻的洞察;长期承担大学生数学竞赛、数学建模竞赛及大学基础数学的教学和理论研究工作。
第一篇高等数学
第一章函数极限连续(3)
考点与要求(3)
1函数(3)
内容精讲(3)
一、定义(3)
二、重要性质、定理、公式(5)
例题分析(6)
一、求分段函数的复合函数(6)
二、关于函数有界(无界)的讨论(7)
2极限(8)
内容精讲(8)
一、定义(8)
二、重要性质、定理、公式(9)
三、计算极限的一些有关方法(10)
例题分析(12)
一、求函数的极限(13)
二、已知极限值求其中的某些参数,或已知极限求另一与此有关的某极限(18)
三、含有|x|,e1x的x→0时的极限,含有取整函数[x]的x趋于整数时的极限(21)
四、无穷小的比较(21)
五、数列的极限(22)
六、极限运算定理的正确运用(26)
3函数的连续与间断(28)
内容精讲(28)
一、定义(28)
二、重要性质、定理、公式(29)
例题分析(30)
一、讨论函数的连续与间断(30)
二、在连续条件下求参数(30)
三、连续函数的零点问题(31)
第二章一元函数微分学(32)
考点与要求(32)
1导数与微分,导数的计算(32)
内容精讲(32)
一、定义(32)
二、重要性质、定理、公式(33)
例题分析(36)
一、按定义求一点处的导数(36)
二、已知f(x)在某点x=x0处可导,求与此有关的某极限或其中某参数,或已知某极限求f(x)在x=x0处的导数(38)
三、绝对值函数的导数(42)
四、由极限式表示的函数的可导性(43)
五、导数与微分、增量的关系(44)
六、求导数的计算题(44)
2导数的应用(46)
内容精讲(46)
一、定义(46)
二、重要性质、定理、公式与方法(47)
例题分析(49)
一、增减性、极值、凹凸性、拐点的讨论(49)
二、渐近线(51)
三、曲率与曲率圆(52)
四、最大值、最小值问题(52)
3中值定理、不等式与零点问题(54)
内容精讲(54)
一、重要定理(54)
二、重要方法(55)
例题分析(56)
一、不等式的证明(56)
二、f(x)的零点与f′(x)的零点问题(61)
三、复合函数ψ(x,f(x),f′(x))的零点(63)
四、复合函数ψ(x,f(x),f′(x),f″(x))的零点(64)
五、“双中值”问题(65)
六、零点的个数问题(66)
......
— 没有更多了 —
以下为对购买帮助不大的评价